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Abstract

In a previous paper, a new generalized definition of Mersenne numbers was proposed of
the form (an – (a – 1)n) called Global Generalized Mersenne numbers, or Generalized
Mersenne numbers in short. For prime exponents n, Generalized Mersenne primes and
composites are generated. In this paper, the properties and distributions of Generalized
Mersenne composites are investigated. It is found that the distribution of composite
Generalized Mersenne numbers follow simple laws demonstrated in three theorems, as
composite GM

a,n
 appear periodically in an infinite number of groups of pairs of solutions

in a, embedded into each others. It is remarkable that the distribution of composite GM
a,n

is completely characterized once the first values of a yielding composite GM
a,n

 are found,
as composite GM

a,n
 are spaced regularly, separated by intervals of values depending on

their factors c
1
 = 2nf

1 
+ 1. Three methods are presented to calculate composite GM

a,n
 and

applied for the first six prime exponents n from 3 to 17.
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1. Introduction

A Mersenne number M
n
 is number of the form M

n
 = (2n – 1). For n is prime, some M

n
 are primes and only for n prime.

However, the reciprocal does not hold as for some n primes, Mersenne numbers are not primes, like, e.g., for n = 11, M
11

is composite, M
11

 = 2047 = 23 . 89 (for review, see e.g., Ribenboim, 1989, Caldwell, 2021, Weisstein, 2023).

Several generalizations of Mersenne numbers have been proposed under various forms, by Crandall (1992), Solinas
(1999, 2005, 2011), De Jesus Angel and Morales-Luna (2006), Hoque and Saikia (2014, 2015), Deng (2004). In a first paper
(Pletser, 2024a), we proposed a new generalized definition of Mersenne numbers of the form (an – (a – 1)n) where the
base a and the exponent n are natural integers. This new generalization is unrelated to previous ones. Although the
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name Generalized Mersenne number is already in use for pseudo Mersenne numbers used in cryptography (see a
review in (Pletser, 2024a)), we propose to call them Global Generalized Mersenne numbers, or in short Generalized
Mersenne numbers or GM

a,n
, indexed by the base a and the exponent n that can take any natural integer values larger

than 1. Generalized Mersenne numbers GM
a,n

 are defined as the difference of the nth power of two successive natural
integers.

GM
a,n

 = an – (a – 1)n ...(1.1)

for all a > 2 and n > 2 natural integers. As for Mersenne numbers, GM
a,n

 generated with composite exponents n yield
only composite GM

a,n
, while prime exponents n yield composite and prime GM

a,n
. Similarly to Mersenne numbers that

can be written in the form

M
n
 = 2nq + 1 ...(1.2)

with q natural integer, all GM
a,n

 can also be written as

GM
a,n

 = 2nQ
n
(a) + 1 ...(1.3)

for all prime exponents n > 3 and for all natural integer values of the base a > 2, and where Q
n
(a) is a polynomial in a of

degree n – 1

     
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where  is written for the triangular number of      1
1 , 1

2

a a
a a


    , and where natural integer coefficients
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 depend only on n. GM

a,n
 can be written more generally as

  , 2 2 1a n nGM n Q    ...(1.5)

for all prime exponents n > 3 and as

    , 2 2 2 1a n nGM n Q      ...(1.6)

for all prime exponents n > 5 and for all natural integer values of the base a > 2, where  2nQ  and  2nQ  are

polynomials in the variable (a – 1) only and of degrees 
3

2

n  
 
 

 and 
5

2

n  
 
 

respectively, derived in (Pletser, 2024a).

Several theorems on Mersenne numbers were generalized and new theorems were demonstrated for GM
a,n

 related to
congruence properties of GM

a,n
 and of their factors (Pletser, 2024a).

In this paper, we investigate properties of GM
a,n

 for n prime, n > 3, as we want to find where the prime GM
a,n

 are. But
instead of searching directly for the primes, we ask first what characterize the composite GM

a,n
. Several methods and

theorems are proposed in Section 2 to search for composite GM
a,n

 and their properties and distributions are characterized.
These methods are applied in Section 3 to the cases of the first six odd prime exponents n from 3 to 17. Conclusions are
drawn in the last section.

Generalized Mersenne primes and their distributions are treated in a third companion paper.

2. Materials and Methods: General Search Methods for Generalized Mersenne Composites

Several methods are presented generally to determine whether a GM
a,n

 is prime or composite. The examples given
further for the different cases of n prime will show the simplicity of these methods. The composite GM

a,n
 can be written

generally as products of their natural integer factors c
i
 as:
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1 2
, 1 2

iee e
a n iGM c c c   ...(2.1)

where e
i
 are positive natural integer exponents and c

i
 are always of the form (Pletser, 2024a)

c
i
 = 2nf

i
 + 1 ...(2.2)

with f
i
 natural integers. For the general case of two factors and with e

1
 = e

2
 = 1 (i.e., even in the case of more than two

factors and for e
1
 and e

2
   1, any combination of products of factors c

i
 can be represented in all generality by this case),

one has

GM
a,n

 = (2nf
1
 + 1) (2nf

2
 + 1) = 2nQ

n
(a) + 1 ...(2.3)

where

Q
n
(a) = f

1
 + 2nf

1
f
2
 + f

2
...(2.4)

Note that, if f
1
 or f

2
 is nil and if the factors c

i
 cannot be further decomposed in other smaller factors of the form (2.2),

the GM
a,n

 is obviously prime. For prime exponents n, the bases a are searched for which the GM
a,n

 are composites, i.e.,
such as relation (2.4) holds, i.e., to find a pair of natural integer values of f

1
 and f

2
 satisfying (2.4).

2.1. Algebraic Method

For prime exponents n > 3, (2.4) with (1.4) can be written as

 
   

3

2
1 1

1 1 2 22 1
0

2 2 0

n

ii i
n i

i

S f nf f f



 
 



       ...(2.5)

The algebraic method involves simply finding the real roots of (2.5). As this equation is in the (n – 1)th degree in the
variable a, it has generally (n – 1) solutions, whose at least two are real of the general form a = (+ 1) and a = –, where
are positive natural integers, if (f

1
 + 2nf

1
f
2
 + f

2
) is a function 

n
 of triangular numbers () specific for each odd prime

exponent n,

f
1
 + 2nf

1
f
2
 + f

2
 = 

n
(()) ...(2.6)

As the bases a must be natural integers a > 2, the second solution a = – is discarded.

Obviously, from (2.4), as Q
n
(a) is an integer function of (a – 1), one has

Q
n
((a – 1)) = 

n
(()) ...(2.7)

meaning that the two functions Q
n
 and 

n
 are identical with the variables  and a such that

a = ( + 1) ...(2.8)

As f
1
 and f

2
 can be permuted by symmetry, the solutions in a of (2.6) come for couples of f

1
 and f

2
 that comply with

(2.6). Starting with a first value of f
1
, the values of f

2
 are searched in increasing order f

2,i
, with i natural integers, such that

the couples (f
1
,  f

2,i
) comply with (2.6). For these couples (f

1
,  f

2,i
), one finds increasing values of , noted 

i
, to which

corresponds the solution

a
i
 = (

i
 + 1) ...(2.9)

All solutions in a of (2.5) in the form (2.9) are found once all couples of f
1
 and f

2
 complying with (2.6) are found.

However, as we have a double infinity of possible values of f
1
 and f

2
, this method is not really practical. Instead, the

solutions in a of (2.5) can be found by the following general method, where the solutions in a are calculated and
presented differently.

2.2. Excluded f
i
 values

Before introducing the general method, we recall the notion of excluded values. Certain values of f
1
 do not yield

solutions for f
2
 and a, simply because for these values of f

1
, there are no values of f

2
 such that relation (2.6) holds. These

values of f
1
 and f

2
 are excluded values and can be calculated a priori by the method demonstrated in Lemma 1 in (Pletser,
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2024a), allowing them to be skipped in all further methods and algorithms. It was found that the general form of excluded
values of f

i
 is

    mod 2if k nk     ...(2.10)

for all integers k > 0, all integers , and all odd integers , complying with

2 1n   ...(2.11)

except that k   0 for  = 0, and if = 1 and  = 1, k must be of the form

k = 2nuv + u + v + r ...(2.12)

with u, v, , , r natural integers and  = 2nr + 1 with both  and    0 and   1. In the general case of    0 (i.e.,  and
   +1), the excluded values f

i
 (2.10) are to be found for all non-negative integers k and for those positive and/or

negative integer values of and    1 such that their product would equal (2n + 1) with  either positive or negative,

i.e.,  and   are the positive and/or negative integer factors of the multiples of 2n augmented or diminished by a unity..
If (2n + 1) for   > 0 (or (2n – 1) for  < 0) is itself a prime, then obviously no values of and    1 would be found
and other values of  have to be considered. In practice, this method to find the excluded values is rather fast as it is
sufficient to verify conditions (2.11) for the first integer values of  and k, as in most cases, similar excluded values are
found repetitively, which allows also to ignore the special case of  = 0,  = 1,  = 1.

From (2.2), the forbidden forms of factors c
i
 corresponding to the excluded values f

i
 (2.10) are then, for all integers

k,

  0 mod 2 1 for 0ic nk k   ...(2.13)

  0 mod 2 for 0ic nk t k   ...(2.14)

for all odd natural integers t, 1 < t < n. These forbidden forms of factors c
i
 are always composites and the product of at

least two factors, which are multiple of integers in the form (2nj – 1) and/or (2nj + t) with j natural integer and at least once
j = k.

2.3. General Method

To introduce the general method, the following theorems are demonstrated, using (2.2) in (2.5).

Theorem 1: For all prime integer odd exponents n and for all factors c
i
 = 2nf

i
 + 1 of a GM

a,n
 with f

i
 non-excluded integer

values, the solutions in a of

 
   

3

2
1 1

1 1 22 1
0

2 0

n

ii i
n i

i

S f c f



 
 



      ...(2.15)

come periodically with cycles of length c
1
 for a fixed value of the integer coefficient f

1
 and for increasing values of f

2

satisfying (2.15).

Proof: Let f
1
 be a first fixed value of the non-excluded integer coefficient appearing in the factor c

1
. Let f

2,a
 be the smallest

non-negative value of the other non-excluded integer coefficient f
2
 such that (f

1
 + c

1
f
2,a

) complies with (2.15). A first initial
solution in a, noted a

a
, can then be found such that (2.15) is satisfied, i.e.,

Q
n
((a

a
 – 1)) = f

1
 + c

1
f
2,a

...(2.16)

For the same fixed value of f
1
, other solutions in a, noted a

b
, are found for other values of f

2
, noted f

2,b
, such that

Q
n
((a

b
 – 1)) = f

1
 + c

1
f
2,b

...(2.17)

Noting a the difference between a next solution a
b
 and the first solution a

a
 and f

2
 the difference between the

corresponding integer coefficients f
2
, i.e.,
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a = a
b
 – a

a
...(2.18)

f
2
 = f

2,b
 – f

2,a
...(2.19)

these differences a and f
2
 are deduced from (2.17), with (2.18) and (2.19),

Q
n
((a

a
 + a – 1)) = f

1
 + c

1
(f

2,a
 + f

2
) ...(2.20)

The triangular number of a sum is easily expressed as

((a
a
 – 1) + a) = (a

a
 – 1) + a

a
a + (a – 1)

   2 1
1

2
a

a

a a a
a

  
    (2.21)

Replacing in the left term of (2.20) then yields, with (1.4),
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1

2
a

n a
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Developing the polynomial in the right term of (2.22) yields

 
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where 1
1

i
jC 
  is the binomial coefficient. By separating the first sums, one has
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  ...(2.24)

and, by factoring by 
 2 1

2
aa a a   

 
 

and inverting the sums in the second sum term, one has
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i
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2

n
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


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 ...(2.25)

where the integer coefficients A
j
 are integer functions of (a

a
 – 1) and n,

 
    

3

2
1 1

12 1 2 1

n

i ji i
j j an i

i j

A S C a



 
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
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  ...(2.26)

with obviously 3

2

nA  always equal to 1 for any value of n.
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The first sum term in (2.25) is Q
n
((a

a
 – 1)) while the second one is noted Q

n
((a

a
 –  1)). Replacing (2.25) in (2.20) and

simplifying with (2.16), one has

Q
n
((a

a
 –  1)) = c

1
f

2
...(2.27)

Replacing with the second sum term of (2.25) yields

    
3

2
0

2
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2

n
ja

j aj

a a a
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f
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

         


...(2.28)

This relation means that the difference f
2
 between a next value and the first value of f

2
 is a function of the difference

a between a next solution a
b
 and the first solution a

a
, of the initial solution a

a
 itself and, of course, of the exponent n.

As the difference f
2
 must be integer, one of the factors in the right term of (2.28) must be divisible by c

1
 depending

on the value of a.

Let the first factor a of (2.28) be divisible by c
1
, then

a(r) = rc
1

...(2.29)

where a is noted a(r), with r positive integers. To this value of a(r) corresponds a difference f
2
(r)
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2
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2 1 1
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n

ja
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j

r rc a
f r A rc rc a


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          
 ...(2.30)

Relation (2.29) yields, from (2.18),

a
b
 = a

a
 + a(r) = a

a
 + rc

1
...(2.31)

meaning that for every initial solution a
a
, there is an infinite number of other solutions a

b
 that can be found for all

positive integers r and for couples of non-excluded integer values (f
1
, f

2b
) with

f
2b

 = f
2a

 + f
2

...(2.32)

and f
2
 given by (2.30). As any solution in a can be chosen as an initial solution a

a
, all solutions corresponding to the

initial couple of non-excluded integer values (f
1
, f

2a
) come periodically with cycles of length c

1
.

Theorem 2: For all prime odd exponents n, for all factors c
i
 = (2nf

i
 +1) of a GM

a,n
 with f

i
 non-excluded integers, and for

a fixed value of f
1
, all M solutions in a of (2.15) smaller than kc

1
 can be ordered in pairs of solutions embedded into each

others and the two solutions of each pair are related by

a
M–j+1

 + a
j
 = kc

1
 + 1 ...(2.33)

for positive integers k and j, with 1 < j < M.

Proof: Let a
1
 be the first smallest solution in a of (2.15) corresponding to the smallest values of non-excluded integer

coefficients f
1
 and f

2,1
 such that (f

1
 + c

1
f
2,1

) complies with (2.15) and let the following solutions a
j
 be ordered by their

integer index j such that

a
1
 < a

2
 < ... < a

j
 < ... ...(2.34)

for the fixed value of f
1
 and for increasing values of non-excluded integer coefficients f

2,j
 such that (f

1
 + c

1
f
2,j

) complies
with (2.25).

Let the second factor of (2.28) (2a
a
 – 1 + a) be divisible by c

1
, then

a(s) = sc
1
 – 2a

a
 + 1 ...(2.35)

where a is noted a(s), with s positive integers. To this value of a(s) corresponds a difference f
2
(s)

      
3

2
1

2 1 1
0

2 1
2 1

2

n

ja
j a

j

s sc a
f s A sc sc a





          
 ...(2.36)
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Relation (2.35) means, from (2.18), that there is another solution a
b
 corresponding to a

a

a
b
 = a

a
 + a(s) = a

a
 + sc

1
 – 2a

a
 + 1 = sc

1
 – a

a
 + 1 (2.37)

As in Theorem 1, any solution in a could be taken as initial value a
a
, this relation (2.37) holds for all solutions a

j
 < sc

1

and in particular for s = k.

As Theorem 1 showed that to all solutions in a correspond other solutions in a found by adding a multiple of c
1
, we

start first with k = 1 in (2.33) and s = 1 in (2.37).

Let m be the number of solutions a
j
 < c

1
, with 1 < j < m. As the smallest value that a

1
 can take is 2, one has from (2.34)

a
1
 < a

2
 < ... < a

j
 < ... < a

m–j+1
 < ... < a

m–1
 < a

m
 < c

1
...(2.38)

Obviously, m must be even as there are 
2

m
pairs of solutions (a

j
, a

q
) such that, from (2.37),

a
j
 + a

q
 = c

1
 + 1 ...(2.39)

with j and q integers, with 1 < j < m and 1 < q < m. If m would be odd, there would be a solution a
u
, with 1 < u < m, left

unpaired that would be paired with another solution a
v
, where either a

v
 < a

1
, which makes no sense, or a

v
 > a

m
, for which

relation (2.39) would not hold.

If a
a
 = a

1
 in (2.37), then obviously a

b
 = a

m
 for relation (2.37) with s = 1 to hold, i.e.,

a
1
 + a

m
 = c

1
 + 1 ...(2.40)

and there are 
2

m
pairs of solutions (a

j
, a

m–j+1
) such that

a
j
 + a

m–j+1
 = c

1
 + 1 ...(2.41)

These 
2

m
pairs of solutions (a

j
, a

m–j+1
) are embedded into each others as shown by (2.38).

For k > 1, let M be the number of solutions a
j
 < kc

1
, with 1 < j < M, with

1 < a
1
 < a

2
 < ... < a

j
 < ... < a

M–j+1
 < ... < a

M–1
 < M < kc

1
...(2.42)

From Theorem 1, adding rc
1
 repetitively to each solution a of the inequalities (2.38) for integers r from 1 to (k – 1)

yields new solutions that are ordered similarly to (2.38)

1 < a
1
 < ... < a

m
 < c

1
 < a

m+1
 = (a

1
 + c

1
) < ... < a

2m
 = (a

m
 + c

1
) < 2c

1
...(2.43)

< a
2m+1

 = (a
1
 + 2c

1
) < ... < a

3m
 = (a

m
 + 2c

1
) < 3c

1
 < ... < (k – 1)c

1

< a
(k–1)m+1

 = (a
1
 + (k – 1)c

1
) < ... < a

km
 = (a

m
 + (k – 1)c

1
) < kc

1

which is identical to (2.42), with M = km showing that M is even and that (2.33) holds from (2.37) with s = k.

Note that, as the smallest value that a
1
 can take is 2, (2.40) yields that a

m
 < (c

1
–1) and that the first 

2

m
solutions a

j
 are

such that

1
1 2

2

1
1

2m

c
a a a


     ...(2.44)

The number m of solutions in a smaller than c
1
 is given in the following theorem in function of the exponent n.

Theorem 3: For all prime odd exponents n and for all factors c
i
 = (2nf

i
 + 1) of a GM

a,n
 with f

i
 non-excluded integers, m =

(n – 1), i.e., the solutions in a of (2.15) come periodically in an infinite number of groups of 
 1

2

n 
pairs of solutions in

a with cycles of length c
1
 for a fixed value of the integer coefficient f

1
 and for increasing values of f

2
 satisfying (2.15).
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Proof: For the simple case of n = 3, the theorem is easily demonstrated as there will be only one pair of solutions in the
first group of solutions, i.e., m = n – 1 = 2, and one has from (2.40)

a
1
 + a

2
 = c

1
 + 1 ...(2.45)

From Theorem 1, all other solutions in a can then be found by adding multiples of c
1
 to these first two solutions.

For prime n > 3, let a
a
 = a

1
 in (2.28) and let the polynomial in a in (2.28) be divisible by c

1
, then

  
3

2

1 1
0

2 1

n

j

j
j

A a a a tc 





     ... (2.46)

with t positive integers. This polynomial of degree 
 3

2

n 
in the variable (a (2a

1
 – 1 + a)) has 

 3

2

n 
solutions whose

at least two are real as n is odd. The real solutions are functions 3

2

nF  
 
 

depending on n, the triangular number of (a
1
 –

1) and the product tc
1
, such that

      1 1 1 1 13 3

2 2

2 1 1 , ,n na a a F a tc F a tc      
   
   

     
...(2.47)

yielding

 
     2

1 1 1 13

2

2 1 2 1 4 , *

*
2

na a F a t c

a t
 

 
 

    

 ...(2.48)

where, as a must be a positive integer, one considers only the positive sign in front of the root sign and only those

integers t, noted t*, yielding positive integers a, noted a(t*), and the function 
3

2

nF  
 
 

(a
1
, t*c

1
) must take positive

values for all integers t*.

From (2.28) with (2.47) and (2.46), the difference f
2
(t*) can then be calculated as

 
 1 13

2
2

* , *

*
2

nt F a t c

f t
 

 
  ...(2.49)

Let the integers t* yielding positive integers a(t) in (2.48) be noted in increasing order *
jt with integers j > 1.

One has to show that m = (n – 1), i.e., that there is (n – 1) solutions in a smaller than c
1
, or

a
1
 < a

2
 < ... < a

n–2
 < a

n–1
 < c

1
 < a

n
 < a

n+1
 < ... ...(2.50)

As, from (2.18), one has

 *
1 1j ja a a t   ...(2.51)

for 2 < j < (n – 2), and with (2.40) and (2.31) with a
a
 = a

1
, (2.50) yields

   * *
1 2 1 1 3 1 2a a a a t a a a t       

   * *
3 1 4 2 1 3n n n na a a t a a a t         

 1 1 1 1 11 1na a a s c a c       

   *
1 1 1 1 1 21n n na a a r a c a a a t            ...(2.52)
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From this, four conditions are deduced on values of a(t*) (2.48) for m = (n – 1) to hold.

The first condition is that the first difference  *
1a t must be positive

 *
1 0a t  ...(2.53)

which is the case if the function  1 13

2

, *nF a t c 
 
 

 is always positive. This first condition constrains also the integer *
1t if

a is replaced in the polynomial (2.46) by 0, i.e., considering only the terms for j = 0 in (2.46), it yields

    
3

2
2
0* 0

1
1 1

2 1
n

in i
i ai

C aA
t

c c


 


    


...(2.54)

with

 
 

 2 1 1
12 1

n i i i
i n iC S C   

  ...(2.55)

The second condition is that all differences  *
ja t must increase monotonically for increasing j, i.e.,

       * * * *
1 2 4 3n na t a t a t a t        ...(2.56)

which is the case as the functions  1 13

2

, *nF a t c 
 
 

(2.47) involve in all generality root functions of (a
1
 – 1) and of the

product t*c
1
, and increases also monotonically for increasing *

jt  in the product *
1jt c as all terms in the polynomial (2.46)

are positive.

The third condition is that the difference  *
3na t  must be smaller than the difference a(s) (2.35) for s = 1, i.e.,

 *
3 1 12 1na t c a     ...(2.57)

or

   *
1 3 1 1 1 13

2

, 2 1nnF a t c c c a 
 
 

  
...(2.58)

This third condition constrains also the integer *
3nt  if a is replaced in the polynomial (2.46) by (c

1
 – 2a

1
 + 1), yielding

  
3

2
1 1 10*

3
1

2 1
n

j

jj

n

A c c a
t

c







  
 


...(2.59)

The fourth condition is that the difference  *
2na t  must be greater than the difference a(r) (2.29) for r = 1, i.e.,

 *
2 1na t c   ...(2.60)

or

   *
1 2 1 1 1 13

2

, 2 1nnF a t c c c a 
 
 

  
...(2.61)

This fourth condition constrains also the integer *
2nt  if a is replaced in the polynomial (2.46) by c

1
, yielding
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  
3

2
1 1 10*

2
1

2 1
n

j

jj

n

A c c a
t

c







   


...(2.62)

If these four conditions are verified, then relation (2.52) holds.

As from Theorem 2, the solutions in a can be paired, the differences  *
ja t and the functions  *

1 13

2

, jnF a t c 
 
 

are

related two by two as follows. From (2.41) and with

 *
1 1j ja t a a    ...(2.63)

all differences  *
1ja t  are such that

   * *
1 1 1 12 1j n ja t a t c a       ...(2.64)

for positive integers 
 1

2
2

n
j


  , which means that the functions  *

1 13

2

, jnF a t c 
 
 

(2.47) are linked by (2.64) such

that

         2 2* * *
1 3 1 1 1 1 1 1 1 1 1 13 3 3

2 2 2

, , 2 1 4 ,n j j jn n nF a t c F a t c c a F a t c c          
          

    
...(2.65)

Therefore, the first (n – 1) solutions can be grouped in 
 1

2

n 
pairs, where the first solution is associated to the (n

– 1)th solution, i.e., (a
1
, a

n–1
), where both solutions are separated by the difference a (s = 1) (2.35); the second solution

is paired with the (n – 2)th solution, i.e., (a
2
, a

n–2
), etc., and the 

th
1

2

n  
 
 

with the 

th
1

2

n  
 
 

solutions, i.e., 1 1

2 2

,n na a 

 
 
 

.

To show the indefinite periodicity with cycles of length c
1
 of groups of (n – 1) solutions, all groups of (n – 1)

solutions are numbered by positive integers k, starting with k = 1 for the first group.

From (2.29) and (2.35), the first and last solutions of the kth group of (n – 1) solutions are such that

a
(k–1)(n–1)+1

 = a
1
 + a(r) = a

1
 + (k – 1)c

1
...(2.66)

a
k(n–1)

 = a
1
 + a(s) = –a

1
 + 1 + kc

1
 = a

n–1
 + (k – 1)c

1
...(2.67)

for all positive integers k and with r = (k – 1) in (2.29) and s = k in (2.35).

For the other (n – 3) solutions of the kth group, the first (n – 3) integers *
jt that yield positive  *

ja t (2.48) are such

that

       * *
1 11 3 1jk n ja t a t k c        ...(2.68)

yielding

      *
11 1 1 3k n j k n ja a a t            *

1 1 1 11 1j ja a t k c a k c        ...(2.69)

for positive integers 2 < j < (n – 2) and for all positive integers k.

Alternatively, as the first seed solution a
a
 can be chosen arbitrarily such as (2.16) holds, and, for example taking as

new seed any  *
1b a aa a a t   of the first group, by (2.29) and with r = (k – 1), the corresponding value in the kth

group is      *
1 1 11 1c b a aa a k c a a t k c        .
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This yields generally

             *
1 1 1 1 11 1 1 1 1 21 1k n k na a k c a a a t k c            

      *
1 3 11 1 1nk na a a t k c       

      1 1 1 11 1 1 1k na a a s k c kc a         ...(2.70)

This shows that all solutions of the first group repeat themselves with cycles of length c
1
 and that in any group all

solutions are ordered similarly as in the first group, and, from (2.66) to (2.68), the (n – 1) solutions in any following group

can be grouped in 
 1

2

n 
pairs embedded into each other..

Theorem 3 yields the following two corollaries on sums and differences of solutions in a within a group of (n – 1) solutions.

Corollary 4: For all prime odd exponents n and for all factors c
i
 = 2nf

i
 + 1 of a GM

a,n
 with f

i
 non-excluded integer values,

within the kth group of 
 1

2

n 
pairs of solutions a, the sum of the two solutions of each pair is such that

a
(k–1)(n–1)+j

 + a
k(n–1) – (j–1)

 = (2k – 1)c
1
 + 1 ...(2.71)

for all positive integers k and j with 1 < j < 
 1

2

n 
.

Proof: For j = 1, the proof is immediate as, from (2.66), (2.67) and (2.40) with m = (n – 1), one has

a
(k–1)(n–1)+1

 + a
k(n–1)

 = a
1
 + a

n–1
 + 2(k – 1)c

1
 = (2k – 1)c

1
 + 1 ...(2.72)

For 2 < j < 
 1

2

n 
, from (2.69) and (2.41) with m = (n – 1), one has

a
(k–1)(n–1)+j

 + a
k(n–1) – (j–1)

 = a
j
 + a

(n–1) – (j–1)
 + 2(k – 1)c

1
 = (2k – 1)c

1
 + 1 ...(2.73)

Corollary 5: For all prime odd exponents n and for all factors c
i
 = 2nf

i
 + 1 of a GM

a,n
 with f

i
 non-excluded integer values,

within the kth group of 
 1

2

n 
pairs of solutions a, the differences of successive solutions in a are such that

a
(k–1)(n–1)+j+1

 – a
(k–1)(n–1)+j

 = a
k(n–1) – j+1

 – a
k(n–1) – j

...(2.74)

for all positive integers k and j with 1 < j < 
 1

2

n 
.

Proof: The proof is immediate as, from (2.71),

a
(k–1)(n–1)+j

 + a
k(n–1) – (j–1)

 = a
(k–1)(n–1)+j+1

 + a
k(n–1) – j

 = (2k – 1)c
1
 + 1 ...(2.75)

yields immediately (2.74).

Note that this second corollary shows as well that the differences  *
ja t in Theorem 3 proof have also the

following property on their differences

       * * *
1 3 1 1 31 2 1n na t a s a t c a a t           ...(2.76)

       * * * *
1 1 3 4j n j n ja t a t a t a t          ...(2.77)

for j positive integers and here 2 < j < 
 3

2

n 
.
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To summarize, for a fixed non-excluded value of the integer coefficient f
1
, all the solutions in a of (2.15) are found in

groups of 
 1

2

n 
pairs of solutions from the first seed solution a

1
 to which is added the first 

 3

2

n 
 differences  *

ja t

(2.48) for those first 
 3

2

n 
 integer values *

jt  that yield positive integers  *
ja t in (2.48), then the remaining 

 3

2

n 

solutions of the first group can be found by (2.41) to form the first group of 
 1

2

n 
 pairs of solutions. This first group

is repeated indefinitely by adding the differences a(r = k–1) (2.29) for all positive integer k to all solutions of the first

group. This is summarized in Table 1 where in the first group, a
1
 is the first seed solution, the next 

 3

2

n 
 solutions a

j

are found by adding the differences  *
1ja t   determined by (2.48), the next 

 1

2

n 
solutions a

n–j
 are found by subtracting

a
j
 from (c

1
 + 1), and in all following kth group, all following solutions a

(k–1)(n–1)+j
 are found by adding (k – 1)c

1
 to a

j
.

First Group (k = 1) kth Group

a
1

a
(k–1)(n–1)+1

 = a
1
 + (k – 1)c

1

a
2
 = a

1
 +  *

1a t a
(k–1)(n–1)+2

 = a
2
 + (k – 1)c

1

... ...

a
j
 = a

1
 +  *

1ja t  a
(k–1)(n–1)+j

 = a
j
 + (k – 1)c

1

... ...

*
1 1 3

2 2

n na a a t 

 
   

    
 1 1 1

1 1
2 2

1n n
k n

a a k c 
  

  

1 1 1

2 2

1n na c a   
  

 1 1 1
1 1

2 2

1n n
k n

a a k c 
  

  

... ...

a
n–j

 = c
1
–a

j
 + 1 a

(k–1)(n–1)+n–j
 = a

n–j
 + (k – 1)c

1

... ...

a
n–2

 = c
1
–a

2
 + 1 a

(k–1)(n–1)+n–2
 = a

n–2
 + (k – 1)c

1

a
n–1

 = c
1
–a

1
 + 1 a

(k–1)(n–1)+n–1
 = a

n–1
 + (k – 1)c

1

Table 1: Values of a
j
 for First and kth Groups of Solutions

All this can be summarized in a single relation

    

 1 11

2

11 2
1 1

2

1 2 1

2

n
j

n j
k n

c a c

a kc

  
 

 
  

 
     

   ...(2.78)

for 1 < j < 
 1

2

n 
, giving all solutions in a in all k groups with k positive integers, where the + (respectively –) sign

corresponds to the first (respectively second) solution in each of the 
 1

2

n 
pairs of solutions.

Replacing in f
2
 (2.28), a by a(r) = (k – 1)c

1
 and by a(s) = (kc

1
 – 2a

1
 + 1) yield respectively  f

2
(r) and f

2
(s)

 
          

3

2
1 1

2 1 1 1
0

1 1 2 1
1 1 2 1

2

n

j

j
j

k k c a
f r A k c k c a





            ...(2.79)
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      
3

2
1 1

2 1 1 1
0

2 1
2 1

2

n

j

j
j

k kc a
f s A kc kc a





       ...(2.80)

This means that all solutions in a of (2.15) for the first fixed value of f
1
 are characterized once the first solution a

1
 is

found. The problem of determining all the values of the bases a that render a GM
a,n

 composite or prime (if f
2
 is nil) for a

specific prime exponent n is reduced to find the first seed solution a
1
 and to determine the first 

 3

2

n 
differences

 *
ja t  by (2.48), for a given value of f

1
 and then start again for all other non-excluded values of f

1
 with (2.15).

2.4. Practical Methods

In practice, one does not have to calculate for all values of f
1
. It is sufficient to start with the values

f
1
 = Q

n
((a – 1)) ...(2.81)

for all bases a. For these values, one would obviously have f
2
 = 0 and if

c
1
 = 2nf

1
 + 1 = 2nQ

n
((a – 1)) + 1 ...(2.82)

cannot be further decomposed in product of factors similar to (2.2), the corresponding GM
a,n

 number is obviously prime.
The following values of f

2
 corresponding to this first value of f

1
 are found for values of a at intervals c

1
 = 2nf

1
 + 1 by (2.9).

These other values of f
2
 are then taken as new values of f

1
, different from other solutions of the function Q

n
((a – 1)), and

the process can start again. Examples of this algorithm are given further for the cases n = 3 and 5. This algorithm allows
to determine whether a GM

a,n
 is composite and to calculate its main factors. Note that in the above algorithms, some

integer values of f
2
 will not be generated and are called excluded values. These correspond to excluded values of f

1
 that

can be calculated in advance by the method given in a lemma in (Pletser, 2024a) and in Section 2.2 Excluded f
i
 values,

allowing to skip them in the above algorithms.

A simpler step by step algorithm to determine whether a GM
a,n

 is prime or composite and to determine its factors is
as follows. Among all possible pairs of f

1
 and f

2
 that are solutions of (2.6), the pair f

1
 = Q

n
((a – 1)) and f

2
 = 0 will always

be a solution for values of a such that 2nf
1
+1 = 2nQ

n
((a – 1)) + 1 = GM

a,n
 is prime. To determine whether a GM

a,n
 is

composite or not, one has to verify that the factor c
1
 corresponding to f

1
 = Q

n
((a – 1)) cannot be further decomposed

with another pair of values of f
1
 and f

2
. For this, one forms from (2.6) and (1.4) the ratio.

  1

2 1
nQ a i

R
ni

  



...(2.83)

and one tests simply this ratio for all positive integers i until this ratio R is smaller than 1. If for a value of i, the ratio R
becomes an integer (which in fact is f

2
), the GM

a,n
 corresponding to this value of a is composite and its main factors can

be calculated with f
1
 = i and f

2
 = R. If for all values of i until the ratio is smaller than 1, this ratio never becomes integer,

the GM
a,n

 corresponding to this value of a is prime. In practice, instead of all positive integers i, it is sufficient to test the
ratio R for all integer factors of Q

n
((a – 1)) as values of i, removing also the excluded values of f

1
.

2.5. Where are the Primes?

Let’s first recall that the primes GM
a,n

 are to be found among those GM
a,n

 having f
1
 = Q

n
((a – 1)) (2.81). Using a method

similar to Erathostenes sieve, the following step by step algorithm allows to find the GM
a,n

 primes among the first N
GM

a,n
 for 2 < a < N + 1.

Step 1: Determine the excluded values of f
1
 like in Section 2.2 Excluded f

i
 values.

Step 2: For each non-excluded values of f
1
, say *

1f , and starting with the first (smallest) value, if there exists a* such

that

  *
1 * 1nf Q a   ...(2.84)
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then the GM
a,n

 corresponding to this a* could be prime, as the corresponding f
2
 is nil. To determine whether this GM

a*,n

is prime, test the ratio (2.83) for natural integers i equal to non-excluded values f
1
 smaller than *

1f .

If this GM
a*,n

 is prime, then strike out all the multiples of this prime GM
a*,n

 which are found for

* *
1ka kc a  ...(2.85)

* *
1 1ka kc a   ...(2.86)

with * *
1 12 1c n f  and k positive natural integers.

If this GM
a*,n

 is not prime (i.e., if the ratio R (2.83) is integer, say R*, for i = i*), it is obviously composite with f
1
 = i*

and f
2
 = R*. Then strike out this GM

a*,n
 and all the multiples of * *

1 2 1c ni  and of * *
2 2 1c nR  which are found for

* *
k ia kc a  ...(2.87)

* * 1k ia kc a   ...(2.88)

with *
ic being respectively *

1c and *
2c .

Repeat Step 2 until the last non-excluded value   *
1 nf Q N  .

Step 3: For those values of f
1
 that are not equal to Q

n
((a – 1)) for any a, in most of the cases these f

1
 will appear as f

2
 for

one of the *
1f  considered in Step 2. Once this   * *

1 1nf Q a    has appeared as a f
2
, the corresponding a, say a*,

yields a composite GM
a*,n

. Then strike out this GM
a*,n

 and all the multiples of * *
1 12 1c n f  which are found for (2.85)

and (2.86).

Repeat Step 3 until the last non-excluded value   *
1 nf Q N  .

When Step 3 is completed, the remaining unstruck values of GM
a,n

 are the primes less than GM
(N+1),n

.

If the natural integer values of Q
n
((a – 1)) are easy to calculate, then consider first those values of f

1
 that are equal

to Q
n
((a – 1)) for some a. This algorithm will be illustrated for n = 3.

3. Results and Discussion: Bases a for Composite GM
a,n

 for Prime Exponents n = 3 to 17

3.1. Bases a Yielding Generalized Mersenne Composites for n = 3

3.1.1. Algebraic Method

For n = 3, relations (2.5) and (1.4), with

Q
3
(a) = (a – 1) ...(3.1)

yield

a2 – a – 2(f
1
 + 6f

1
f
2
 + f

2
) = 0 ...(3.2)

which has in general the two real solutions

 1 1 2 21 1 8 6

2

f f f f
a

   
 ...(3.3)

yielding positive integers a for the + sign in (3.3) and if the discriminant is the square of an odd integer, i.e., if

f
1
 + 6f

1
f
2
 + f

2
 = (K) ...(3.4)

with K positive integers, which corresponds to relation (2.7)
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Q
3
(a) = (a – 1) = 

3
((K)) = (K) ...(3.5)

that gives the first integer solution a of the form (2.8), a = K + 1.

3.1.2. Excluded f
i
 Values

Certain values of f
1
 do not yield solutions in a and f

2
, simply because for these values of f

1
, there are no values of f

2
 such

that relation (3.5) can hold. These values of f
1
 and f

2
 are excluded values and are f

i  4, 9, 14, 19, 20, 24, 29, 31, 42, 48, 53,
65, ....

These can be calculated a priori, allowing them to be skipped in above algorithms.

From (2.10), the single general relation of excluded f
i
 values is obtained for the integer triplet       = (0, –1, –1)

and is

  mod 6 1if k k   ...(3.6)

for all positive integers k, yielding for

   1: 1 mod5 or 4 mod5 i.e., 4, 9, 14, 19, 24,i i ik f f f       ...(3.7)

   2 : 2 mod11 or 9 mod11 i.e., 9, 20, 31, 42, 53,i i ik f f f       ...(3.8)

   3: 3 mod17 or 14 mod17 i.e., 14, 31, 48, 65, 82,i i ik f f f       ...(3.9)

   4 : 4 mod 23 or 19 mod 23 i.e., 19, 42, 65, 88, 111,i i ik f f f       ...(3.10)

etc. All other positive and negative integer values of the triplet       complying with (2.11) would yield repetitively

similar excluded values. The excluded values f
i
 (3.6) with (2.2) yield the forbidden forms of factors c

i
 (2.13), with positive

integers k,

  0 mod 6 1ic k  ...(3.11)

These forbidden forms of factors c
i
 are always composites and the product of at least two factors, which are multiple

of integers in the form (6j – 1) with j integers and with at least once j = k. For f
i
   4, 9, 14, 19, 20, 24, 29, 31, 42, 48, 53, 65,

..., it yields successively c
i  25, 55, 85, 115, 121, 145, 175, 187, 253, 289, 319, 391, ....

3.1.3. General Method

From (2.45), one has two solutions in the first group such as

a
1
 < a

2
 = (c

1
 – a

1
 + 1) ...(3.12)

that repeats itself with cycles c
1
, as (2.70) reduces to

a
2k–1

 = (a
1
 + (k – 1)c

1
) < a

2k
 = (kc

1
 – a

1
 + 1) ...(3.13)

These two relations for a
2k–1

 and a
2k

 can be combined into a single general relation (2.78),

   1 1 1
11 1

2
2

1 2 1

2k

c a c
a kc    

  

   
  ...(3.14)

yielding all values of solutions a
i
 knowing a

1
 for all positive integers k.

The expression of f
2
 (2.28) reduces to

 1
2

1

2 1

2

a a a
f

c

 


 
 ...(3.15)
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The values of f
2,(2k–1)

 and f
2,2k

 for a
2k–1

 and a
2k

 can be found in function of a
1
, f

1
, c

1
 and k, from (2.19) with (2.2), and with

(2.79) or (2.80)

          1 11 1 1
2,1 22, 2 1

1

1 1 2 11 2

2 2k

k k c aa a f
f f f r

c


      
           

...(3.16)

     1 1 1 1 1
2,2 2,1 2

1

1 2 2 1

2 2k

a a f k kc a
f f f s

c


      
      

   
...(3.17)

for all positive integers k. These two relations can be combined into a single one

        1 1 1 1 1 11
11 1

2, 2
12

1 2 2 1 2 111
1

2 2 2k

a a c f k a cc
f k k c

c    
  

      
     

 
...(3.18)

Note that for this case of n = 3, in addition to the relation (2.71)

a
2k–1

 + a
2k

 = (2k – 1)c
1
 + 1 ...(3.19)

the relation

a
2k–1

 – a
2k

 = 2(f
2,1

 – f
2,2

) ...(3.20)

also holds for all positive integers k, yielding, for k = 1, the relations

a
1
 = 3f

1
 + f

2,1
 – f

2,2
 + 1; a

2
 = 3f

1
 – f

2,1
 + f

2,2
 + 1 ...(3.21)

a
1
 + a

2
 = 6f

1
 + 2 = c

1
 + 1 ...(3.22)

and that the relation

 
    1 1 1 11

2,2 12, 2 1
1

1 21
1

2kk

a a c fc
f f k k c

c

  
     ...(3.23)

from (3.16) and (3.17) holds for all couples of values (f
2,(2k–1)

, f
2,2k

) within a cycle of length c
1
.

3.1.4. Examples

Following the algebraic method, starting with the first non-excluded value of f
1
 = 1, a first solution from (3.4) is given by

f
2
 = 0 yielding (K) = 1 for K = 1, giving a

1
 = 2 in (3.3) or (2.8). As c

1
 = 2nf

1
 + 1 = 7 cannot be further factorized, the GM

2,3

for a = 2 is prime. A second solution is found for f
2
 = 2 yielding (K) = 15 in (3.4) for K = 5, giving a = 6. And so on.

Instead of sweeping all values of f
2
 in search of K for (3.5) to hold, the above general method is followed. For f

1
 = 1

(and c
1
 = 7), the general relation (3.14) yields the first pair of solution for k = 1, a

1
 = 2 and a

2
 = 6. The corresponding

values of f
2
 can be found by (3.18), yielding here respectively f

2,1
 = 0 and f

2,2
 = 2. Other solutions for k = 2, 3, ... are from

(3.14) a
2k–1

 = 9, 16, ... for f
2,(2k–1)

 = 5, 17, ..., and a
2k

 = 13, 20, ... for f
2,2k

 = 11, 27, ....

Solutions for other non-excluded values of f
1
 are shown in Table 2 for 1 < f

1 
< 10 and k = 1 to 3, where for each value

of f
1
, the first and second lines correspond respectively to the first and second solutions of the solution pair. The

corresponding composite GM
a,3

 are shown in Table 2; other GM
a,3

 can be found in Sequence A003215 in (Sloane, 2024).

Note that, when f
1
 is a triangular number (f

1
 = 1, 3, 6, 10, ...), (3.18) yields f

2,1
 = 0 as first solution for k = 1, which means

that, if the factor c
1
 cannot be further decomposed in similar factors (2.2), the corresponding Generalized Mersenne

number is prime.

This simple approach explains why the first composite in the series of GM
a,n

 for n = 3 in Table 3 appears for a = 6. The
smallest non-nil values of f

1
 and f

2
 that yield integers a in (3.3) are f

1
 = 1 and f

2
 = 2, as f

1
 = f

2
 = 1 does not yield a triangular

number in (3.5) and an integer a. Therefore all the GM
a,3

 values for a < 6 cannot be composites and must be primes, as
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can be seen from Table 2 where a = 2 (for f
1
 = 1), a = 3 (for f

1
 = 3), a = 4 (for f

1
 = 6), a = 5 (for f

1
 = 10) yield primes as f

2
 = 0

for these cases.

Note further that, as the roles of f
1
 and f

2
 can be permuted, certain solutions are found twice.

3.1.5. Practical Methods

In practice, one does not have to calculate for all values of f
1
. It is sufficient to start with all the values f

1
 = (a – 1) for

all a; the other values of f
1
 which are not triangular numbers are generated as f

2
 corresponding to the first triangular

numbers of f
1
. Let’s develop the following algorithm following Table 4, where prime (respectively composite) values of

GM
a,n

 are in bold (respectively italic) characters.

Starting with the first triangular number 1, we know that for a = 2, GM
2,3

 = 7 is prime, to which corresponds f
1
 = (a

– 1) = 1 and obviously f
2
 = 0. The following values of f

2
 for f

1
 = 1 would appear, with positive integers k, from (3.13)

respectively for a
2k–1

 = 7 (k – 1) + 2 = 2, 9, 16, 23, ..., and for a
2k

 = 7k – 1 = 6, 13, 20, ..., for which all GM
a,3

 are composites

a  f
2, GM

a,3
a  f

2, GM
a,3

a  f
2, GM

a,3

1 7 2 0 7 9 5 217 16 17 721

6 2 91 13 11 469 20 27 1141

2 13 6 1 91 19 13 1027 32 38 2977

8 2 169 21 16 1261 34 43 3367

3 19 3 0 19 22 12 1387 41 43 4921

17 7 817 36 33 3781 55 78 8911

5 31 9 1 217 40 25 4681 71 80 14911

23 8 1519 54 46 8587 85 115 21421

6 37 4 0 37 41 22 4921 78 81 18019

34 15 3367 71 67 14911 108 156 34669

7 43 17 3 817 60 41 10621 103 122 31519

27 8 2107 70 56 14491 113 147 37969

8 49 23 5 1519 72 52 15337 121 148 43561

27 7 2107 76 58 17101 125 158 46501

10 61 5 0 61 66 35 12871 127 131 48007

57 26 9577 118 113 41419 179 261 95587

Table 2: Values of a and f
2,Yielding Composite GM

a,3
 (Except for 2 < a < 5)

k = 1 k = 2 k = 3
c

1f
1

Note: Where  = (2k – 1) and = 2k for the first and second lines for each value of f
1
. Note that 4 and 9 are excluded values of f

1
.

GM
a,3

 in bold are primes.

a GM
a,3

 = 2 . 3 .  + 1

2 7 = 2 . 3 . 1 + 1 prime

3 19 = 2 . 3 . 3 + 1 prime

4 37 = 2 . 3 . 6 + 1 prime

5 61 = 2 . 3 . 10 + 1 prime

6 91 = 2 . 3 . 15 + 1 = 7 . 13 = (2 . 3 + 1) (22 . 3 + 1)

7 127 = 2 . 3 . 21 + 1 prime

8 169 = 2 . 3 . 28 + 1 = 13 . 13 = (22 . 3 + 1) (22 . 3 + 1)

9 217 = 2 . 3 . 36 + 1 = 7 . 31 = (2 . 3 + 1) (2 . 15 + 1)

10 271 = 2 . 3 . 45 + 1 prime

Table 3: Decomposition of GM
a,3
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a GM
a,3

Q
3

f
1
, f

2
f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

2 7 1 1, 0 0
+

- - - - - - -

3 19 3 3, 0 - - 0
+

- - - - -

4 37 6 6, 0 - - - - 0
+

- - -

5 61 10 10, 0 - - - - - - - 0
+

6 91 15 1, 2 2
–

1
+

- - - - - -

7 127 21 21, 0 - - - - - - - -

8 169 28 2, 2 - 2
–

- - - - - -

9 217 36 1, 5 5
+

- - 1
+

- - - -

10 271 45 45, 0 - - - - - - - -

11 331 55 55, 0 - - - - - - - -

12 397 66 66, 0 - - - - - - - -

13 469 78 1, 11 11
–

- - - - - - -

14 547 91 91, 0 - - - - - - - -

15 631 105 105, 0 - - - - - - - -

16 721 120 1, 17 17
+

- - - - - - -

17 817 136 3, 7 - - 7
–

- - 3
+

- -

18 919 153 153, 0 - - - - - - - -

19 1027 171 2, 13 - 13
+

- - - - - -

20 1141 190 1, 27 27
–

- - - - - - -

21 1261 210 2, 16 - 16
–

- - - - - -

22 1387 231 3, 12 - - 12
+

- - - - -

23 1519 253 1, 36 36
+

- - 8
–

- - 5
+

-

24 1657 276 276, 0 - - - - - - - -

25 1801 300 300, 0 - - - - - - - -

26 1951 325 325, 0 - - - - - - - -

27 2107 351 1, 50 50
–

- - - - 8
–

7
–

-

28 2269 378 378, 0 - - - - - - - -

29 2437 406 406, 0 - - - - - - - -

30 2611 435 1, 62 62
+

- - - - - - -

31 2791 465 465, 0 - - - - - - - -

32 2977 496 2, 38 - 38
+

- - - - - -

33 3169 528 528, 0 - - - - - - - -

34 3367 561 1, 80 80
–

43
–

- - 15
–

- - -

35 3571 595 595, 0 - - - - - - - -

36 3781 630 3, 33 - - 33
–

- - - - -

37 3997 666 1, 95 95
+

- - - - - - -

38 4219 703 703, 0 - - - - - - - -

39 4447 741 741, 0 - - - - - - - -

40 4681 780 5, 25 - - - 25
+

- - - -

41 4921 820 1, 117 117
–

- 43
+

- 22
+

- - -

42 5167 861 861, 0 - - - - - - - -

Table 4: Evolution of Values of GM
a,3

, c
1
, f

1
 and f

2
 for n = 3 and 2 < a < 50

f
1 
= 1 2 3 5 6 7 8 10

c
1 
= 7 13 19 31 37 43 49 61
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a GM
a,3

Q
3

f
1
, f

2
f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

43 5419 903 903, 0 - - - - - - - -

44 5677 946 1, 135 135
+

- - - - - - -

45 5941 990 2, 76 - 76
+

- - - - - -

46 6211 1035 1035, 0 - - - - - - - -

47 6487 1081 2, 83 - 83
–

- - - - - -

48 6769 1128 1, 161 161
+

- - - - - - -

49 7057 1176 1176, 0 - - - - - - - -

50 7351 1225 1225, 0 - - - - - - - -

Table 4 (Cont.)

f
1 
= 1 2 3 5 6 7 8 10

c
1 
= 7 13 19 31 37 43 49 61

Notes: GM
a,3

 in bold (respectively italic) characters are prime (respectively composite), Q
3
 = (a – 1), subscripts + and – refer to f

2+

and f
2–

.

(except of course pour the first seed value a
1
 = 2 for k = 1). The corresponding values of f

2
 can be calculated by (3.18)

and (3.23) and are respectively 5, 17, 36, ... and 2, 11, 27, ....

These values of f
2
 are taken as new values of f

1
 for which new c

1
 are calculated and new pairs of f

1
 and f

2
 are found

yielding other composites GM
a,3

.

For example, taking f
1
 = 2, yielding c

1
 = 13, gives the first value of a = 6 for f

1
 = 2 and f

2
 = 1, yielding the composite

GM
6,3

 = 91. Other composites are found like above for a
2k–1

 = 13k + 6 = 19, 32, 45, ..., and for a
2k

 = 13k – 5 = 8, 21, 34, ...,
for which all GM

a,3
 are composites. These new values of f

2
 are taken as new values of f

1
 and the process can start again.

One proceeds similarly for other triangular numbers 3, 6, 10, ... as seeds for f
1
 = (a – 1).

This algorithm allows to determine whether a GM
a,3

 is composite and to calculate its main factors.

In the simpler step by step algorithm, among all possible pairs of f
1
 and f

2
 solutions of (3.5), the pair f

1
 = (a – 1) and

f
2
 = 0 will always be a solution for a such as (2nf

1
 + 1) is prime. To determine whether a GM

a,3
 is composite or not, one

verifies that the factor corresponding to f
1
 = (a – 1) cannot be further decomposed with another pair of values of f

1
 and

f
2
, testing the ratio

 1

6 1

a i
R

i

  



...(3.24)

for all positive integers i until this ratio R < 1. If for a value of i, the ratio R becomes a positive natural integer (which in
fact is f

2
), the GM

a,3
 corresponding to this a is composite and its main factors can be calculated with f

1
 = i and f

2
 = R. If

for all i until R < 1, this ratio R never becomes integer, the GM
a,3

 corresponding to this a is prime.

Let’s develop the following example.

Starting with a = 2, and i = 1, one has R = 0 < 1, thus GM
a,3

 = 7 is prime.

For a = 3 and i = 1, one has 
2

1
7

R   , thus GM
3,3

 = 19 is prime.

For a = 4 and i = 1, one has 
5

1
7

R   , thus GM
4,3

 = 37 is prime.

For a = 5 and i = 1 and 2, one has successively 
9 8

1; 1
7 13

R R    , thus GM
5,3

 = 61 is prime.

For a = 6 and i = 1, one has 14
2

7
R   , thus GM

6,3
 = 91 is composite.
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For a = 7 and i = 1, 2 and 3, one has successively 20 19 18
1; 1; 1

7 13 19
R R R      , thus GM

7,3
 = 127 is prime.

For a = 8 and i = 1 and 2, one has successively 27 26
1; 2

7 13
R R    , thus GM

8,3
 = 169 is composite.

And so on.

3.1.6. Where are the GM
a,3

 Primes ?

We follow the algorithm of Section 2.5 with Q
3
 (a – 1)) = (a – 1) to find the GM

a,3
 primes for 2 < a < 50 (i.e., N = 49).

Multiples of GM
a,3

 primes will be found for values of * *
1ka c k a    and * *

1 1ka c k a     with k positive natural

integers, * * *
1 1 12 1 6 1c nf f    and a* the first solution in a of (3.2) with  * *

1 1 1f f a    and f
2
 = 0. The first step

needs to determine the maximum values of a and f
1
 such that the smallest value of a

k
 (here a

k–
) is smaller than 50 for k

= 1.

Step 1: Determine the largest values a
max

 of a and f
1max

 of f
1
 such that f

1max
 = (a

max
 – 1) and a

k–
 < 50 for k = 1, i.e.,

1 1max max 1max max1 6 2a c a f a       ...(3.25)

 max max6 1 2a a     ...(3.26)

 max max max3 1 2 50a a a     ...(3.27)

yielding a
max

 < 4.721 or a
max

 = 4 and f
1max

 = (a
max

 – 1) = 6.

Step 2: Determine the excluded values of f
1
 < f

1max
, i.e., f

1  4 (see Section 3.1.2).

Step 3: For the non-excluded values of f
1
 < f

1max
, i.e., f

1
 = 1, 2, 3, 5, 6, select those that equal to  (a – 1) for some values

of a, i.e., that are triangular numbers f
1
 = 1, 3, 6.

Start with the smallest *
1 1f  , one has that for a* = 2,  (a* – 1) = 1 = *

1f and test the ratio R (3.24), but as there are

no values of natural integers i smaller than *
1 1f  , a* = 2 yields that GM

2,3
 * *

1 16 1 7c f    is prime. Then strike all the

GM
a,3

 multiples of 7 which are found for a
k+

 = 7k + 2 < 50 and a
k–

 = 7k – 1 < 50 with k positive natural integers, i.e., for
a

k+
 = 9, 16, 23, 30, 37, 44 and a

k–
 = 6, 13, 20, 27, 34, 41, 48.

For the next value of  * *
1 1 3f a    for a* = 3, and testing the ratio R (3.24) for i = 1, 

2
1

7
R   , it yields that

GM
3,3

 * *
1 16 1 19c f    is prime.

Then strike all the GM
a,3

 multiples of 19, found for a
k+

 = 19k + 3 < 50 and a
k–

 = 19k – 2 < 50, i.e., for a
k+

 = 22, 41 and
a

k–
 = 17, 36.

The last value of  * *
1 1 6f a    for a* = 4, and 

5
1

7
R   , yielding that GM

4,3
 * *

1 16 1 37c f    is prime. Then

strike all the multiples of GM
4,3

 appearing for a
k+

 = 37k + 4 < 50 and a
k–

 = 37k – 3 < 50, i.e., for a
k+

 = 41 and a
k–

 = 34.

Stop Step 3 here as the next value of  * *
1 1 10f a     for a* = 5 would yield * *

1 16 1 61c f   and a
k+

 = 61k + 5

and a
k–

 = 61k – 4 which are both larger than 50 for positive integers k.

Step 4: Select the non-excluded values of f
1
 which are not triangular numbers.

For *
1 2f  , determine the smallest natural integer value of f

2
 and the corresponding value of a such that (3.2) holds.

Here obviously f
2
 = 1 and a* = 6, which yields that GM

6,3
 is composite as already found in Step 2. Then strike out all the
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GM
a,3

 which are multiple of * *
1 16 1 13c f   which appear for a

k+
 = 13k + 6 < 50 and a

k–
 = 13k – 5 < 50, i.e., for a

k+
 = 19,

32, 45 and a
k–

 = 8, 21, 34, 47.

For *
1 5f  , one finds similarly f

2
 = 1 and a* = 9, which yields that GM

9,3
 is composite as already found in Step 2. Then

strike out all the GM
a,3

 which are multiple of * *
1 16 1 31c f   which appear for a

k+
 = 31k + 9 < 50 and a

k–
 = 31k – 8 < 50,

i.e., for a
k+

 = 40 and a
k–

 = 23.

Stop Step 4 here as all the following non-excluded value of  * *
1 1f a   yield composite GM

a,3
 which are already

eliminated in Step 3. For example, the value *
1 7f   would yield f

2
 = 3 and a* = 17 giving * *

1 16 1 43c f   and a
k+

 = 43k

+ 17 > 50 for positive integers k and a
k–

 = 43k – 16 which, for k = 1, is 27 which is already eliminated in Step 3 and then
a

k–
 are larger than 50 for integers k > 1.

This algorithm is relatively fast and allows to find in four steps (including 3 substeps in Step 3 and 2 substeps in Step
4) where the 26 GM

a,3
 primes and the 23 GM

a,3
 composites are for 2 < a < 50 (see Table 4), without having to calculate the

values of all the GM
a,3

. Only five values of Q
3
 (a – 1)) = (a – 1) had to be calculated for the first solutions a*.

3.2. Bases a Yielding Generalized Mersenne Composites for n = 5

3.2.1. Algebraic Method

For n = 5, (2.5) and (1.4), with

Q
5
(a) = (a – 1) (2(a – 1) + 1) ...(3.28)

yield

a4 – 2a3 + 2a2 – a – 2(f
1
 + 10f

1
f
2
 + f

2
) = 0 ...(3.29)

which has the general solutions

  1 1 2 21 1 2 1 1 8 10

2

f f f f
a

      
 ...(3.30)

yielding two complex solutions of no interest here, and two real solutions. One of these will be a positive integer
solution for the positive signs in front of the two square root signs, and if the discriminant under the first square root
sign is the square of an odd integer, (2K + 1)2 = 1 + 8(K), i.e., if

f
1
 + 10f

1
f
2
 + f

2
 = (2(K)) = (K) (2(K) + 1) ...(3.31)

with K positive integers, which corresponds to relation (2.7)

Q
5
(a) = (a –1) (2(a – 1) + 1) = 

5
((K)) = (K) (2(K) + 1) ...(3.32)

that gives the first integer solution in a of the form (2.8), a = K + 1.

The triangular number of twice a triangular number of K is the sum of two pyramidal numbers, or the product of a
triangular number by its double augmented by one unity, or the triple sum of octahedral numbers from 1 to K (Conway
and Guy, 1996) or twice the sum of the first Kth cubes plus the sum of the first Kth integers i.

        
2

3

1 1 1 1

2 1
2 3 2

3

K K K K

i
i i i i

i i
K Oct i i

   

 
           

    ...(3.33)

i.e., for integers K = 1 to 5, (2(K)) takes the values 3, 21, 78, 210, 465, etc.

Only for these values does a in (3.30) take integer values greater than 1, which are further determined by the general
method.
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3.2.2. Excluded f
i
 Values

As previously, certain integer values of f
i
 do not yield integer solutions for a and f

2
, namely f

1
   2, 5, 8, 9, 11, 14, ... . From

(2.10), the general relation of excluded values f
i
 is

    mod 10if k k     ...(3.34)

for all positive integers k, and for integers    0,  1 and   1 complying with (2.11).

For the integer triplet (, ,  ) = (0, –1, –1), (3.34) gives a first general relation of excluded values f
i

  mod 10if k k    ...(3.35)

for all positive integers k, yielding for

   1: 1 mod9 or 8 mod9i ik f f     ...(3.36)

   2 : 2 mod19 or 17 mod19i ik f f     ...(3.37)

   3 : 3 mod 29 or 26 mod 29i ik f f     ...(3.38)

etc. For (, ,  ) =  1, 3, 3   , a second general relation of excluded values f
i
 is

    3 1 mod 10 3if k k    ...(3.39)

for all non-negative integers k, yielding respectively for the upper and lower signs

   0 : 1 mod3 or 2 mod3i ik f f     ...(3.40)

     1: 2 mod 7 and 4 mod13 or 9 mod13i i ik f f f       ...(3.41)

     2 : 5 mod17 and 7 mod 23 or 16 mod 23i i ik f f f       ...(3.42)

     3 : 8 mod 27 and 10 mod 33 or 23 mod33i i ik f f f       ...(3.43)

etc. For all other positive and negative integer values of , and   complying with (2.11), the general expressions of
f
i
 will not be different. From (2.2), forbidden forms of factors c

i
 (2.20) corresponding to excluded values f

i
 (3.35) and (3.39)

are of the form, with positive integers k,

  0 mod 10 1 for 0ic k k   ...(3.44)

  0 mod 10 1 for 0ic k k   ...(3.45)

These forbidden forms of factors c
i
 are always composites and the product of at least two factors, which are multiple

of integers of the form 10j – 1 and/or 10j + 3, with j integers and with at least once j = k.

3.2.3. General Method

From (2.70), the first pair of solutions (a
4k–3

, a
4k

) in all k groups is

a
4k–3

 = a
1
 + (k – 1)c

1
 < a

4k
 = kc

1
 – a

1
 + 1 ...(3.46)

From (2.46), with the coefficient (2.26)

A
0
 = 4(a

1
 – 1) + 1 = 2a

1
(a

1
 – 1) + 1 ...(3.47)

the function F
(1)

(a
1
, t*c

1
) is

F
(1)

(a
1
, t*c

1
) = t*c

1
 – 2a

1
(a

1 
– 1) – 1 ...(3.48)
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yielding

     2*
1 1 1*

2 1 4 2 1 2

2

a t c a
a t

     
 ...(3.49)

which takes positive integer values first, for the positive sign in front of the root sign and if the square root is greater
than the first term of (3.49) yielding

 1 1*

1

2 1 1a a
t

c

 
 ...(3.50)

which verifies the first condition (2.54), and second, for those values of integers t* that yield positive integers value to
a(t*), i.e., if the discriminant in (3.49) is the square of an odd integer, i.e.

4t*c
1
 – (2a

1
 – 1)2 – 2 = (2T + 1)2 ...(3.51)

with T positive integers, yielding

       1 1 1*

1 1

1 1 1 2 2 1 1T T a a T a
t

c c

        
  ...(3.52)

The first two smallest integer values of T, i.e., T
1
 and T

2
 such that t* in (3.52) is integer and complies with (3.50) give

*
1t and *

2t , yielding  *
1a t and  *

2a t . These two values of a(t*) are related by (2.64) and  *
2a t  can be found from

 *
1a t as

   * *
2 1 1 1 1 1 22 1 1a t c a a t c a a         ...(3.53)

yielding, from (2.47) and (3.48),

  * * * *
2 1 1 1 1 1 1 22 1 2 1t t c a a t t c a         ...(3.54)

Note also that  *
2a t in (3.53) verifies the condition (2.57) as a

1 
< a

2
.

The fourth condition (2.62) yields that

    1 1 1 1 1 1*
3

1

1 1 1c a c a a a
t

c

     
 ...(3.55)

constraining the value of T
3
 from (3.52) to

T
3
 > c

1
 + a

1 
– 1 ...(3.56)

The first group of two pairs of solutions reads then

a
1
 < a

2
 = a

1
 +  *

1a t < a
3
 = a

1
 +  *

2a t = c
1
a

2
 + 1 < a

4
 = c

1
 – a

1
 + 1 ...(3.57)

The other groups of two pairs of solutions are found by adding (k – 1)c
1
 to these first four solutions as

a
4k–3

 = a
1
 + (k – 1) c

1
 < a

4k–2
 = a

2
 + (k – 1)c

1

< a
4k–1

 = a
3
 + (k – 1)c

1
 < a

4k
 = a

4
 + (k – 1)c

1
...(3.58)

for all positive integers k. These relations for a can be combined into the single general relation (2.78), yielding all values
of solutions a

 
   1 3 1

13 2 1
4

2

1 2 1

2

j

j
k

c a c
a kc



 


   
  ...(3.59)



Vladimir Pletser / Int.J.Pure&App.Math.Res. 4(2) (2024) 5-46 Page 28 of 46

for 1 < j < 2 and for all positive integers k.

The differences f
2
(r), f

2
(s) and f

2
(t*) are found from (2.79), (2.80) and (2.49) and yield the general relation for f

2

    1
1 13 2 1

2, 4
2

11
1 1

2 2j
k

c
f c c  

  
 

           

        3 3 1 3 3 1 1 1 1

1

1 1 2 1 1 2j j j ja a c a a c c c f

c

   
        
 
 
 

             2
1 1 3 3 1 1 11 1 1 6 1 2 1 1j jk k c k k k k c a a c c c           

         1 12
3 1 1 3 3 1

1 1
2 1 2 1 1 1

2j j j

c c
k a c k k c a a c  

   
              

...(3.60)

for 1 < j < 2 and for all positive integers k.

3.2.4. Examples of Calculation

From the algebraic method, starting with the first non-excluded value of f
1
 = 1, yielding c

1
 = 11, one has that the smallest

value of f
2
 that satisfies (3.31) is f

2,1
 = 7 to which corresponds K = 3 as, from (3.31),

c
1
f
2,1

 + f
1
 = 11 . 7 + 1 = (2(K = 3)) = 78 ...(3.61)

yielding from (2.8) the first seed solution a
1
 = 4 for this value of f

1
 = 1. From (3.49), with T = 4 and *

1t = 3 in (3.52),  *
1a t =

1 and a
2
 = 5. From (3.59), the other solutions for k = 1 are a

3
 = 7 and a

4
 = 8. From (3.60), the values of f

2
 are respectively

19, 82, and 145. Other values are given in Table 5 for 1 < f
1
 < 10 and k = 1 to 3. For the next non-excluded value of f

1
 = 3

(which is the value of (2(K)) for K = 1) yielding c
1
 = 31, one has f

2,1
 = 0 in (3.31), meaning that a

1
 = 2 does not yield a

composite but a Generalized Mersenne prime, which is the Mersenne prime M
5
 = 31. From (3.49), with T = 9 and *

1t = 3 in

(3.52),  *
1a t = 8 and a

2
 = 10. From (3.59), the other solutions for k = 1 are a

3
 = 22 and a

4
 = 30. Corresponding composite

GM
a,5

 can be found in Sequence A022521 in (Sloane, 2024).

3.2.5. Practical Method

Like in Section 3.1.2, one does not have to calculate for all values of f
1
 and one can start with all the values f

1
 from (3.31)

with f
2
 = 0

f
1
 = (a – 1) (2(a – 1) + 1) ...(3.62)

for all a. The other values of f
1
 which are not appearing in (3.62) are generated as f

2
 values corresponding to the first

value of f
1
 (3.62). Like above, let’s follow the algorithm in Table 6, where prime (respectively composite) values of GM

a,n

are in bold (respectively italic) characters.

Instead of starting with the first non-excluded value of f
1
 = 1, we start with the first value of a

1
 = 2 yielding from (3.62)

f
1
 = 3 to which corresponds c

1
 = 31, which cannot be further decomposed and is prime, meaning that f

1
 = 3 and f

2,1
 = 0 are

genuine coefficients of the factors c
1
 and c

2
. One obtains then the prime GM

2,5
 = 31. The following values of 3 3

2, 4
2

k
f   

 

on

the positive and negative branches for f
1
 = 3 appear respectively for a

4k–3
 = 2 + kc

1
 = 31k + 2 for all positive integers k,

that is, for k = 2 to 4, a
4k–3

 = 33 (for f
2
 = 18003), 64, 95, ..., and for a

4k
 = –(2 – 1 – kc

1
) = 31k – 1 that is, for k = 2 to 4, a

4k
 =

30 (for f
2
 = 12222), 61, 92, ..., for which all GM

a,5
 are composites. Still for f

1
 = 3, the second solution is a

2
 = 10, to which

corresponds f
2,2

 = 132 from (3.60). The following positive and negative branches of other values of 3 1
2, 4

2
k

f   
 

for f
1
 = 3
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and a
2
 = 10 appear respectively for a

4k–2
 = 31k + 10 for all positive integers k, that is, for k = 2 to 4, a

4k–2
 = 41 (for f

2
 = 43407),

72, 103, ..., and for a
4k–1

 = 31k – 9 = 22 (for f
2
 = 3450), 53, 84, ..., for which all GM

a,5
 are again composites. All the

corresponding values of f
2
 are taken as new values of f

1
 and the process is repeated for these values of f

1
. Moving now

to the next value of a
1
 = 3 yields from (3.62) f

1
 = 21 (not represented in Table 6) and f

2,1
 = 0. As c

1
 = 211 cannot be further

decomposed and is prime, one obtains the prime GM
3,5

 = 211. The following values of 3 3
2, 4

2
k

f   
 

on the positive and

negative branches for f
1
 = 21 appear respectively for a

4k–3
 = 3 + kc

1
 = 211k + 3 for all positive integers k, i.e., a

4k–3
 = 214,

425, 636, ..., and for a
4k

 = –(3 – 1 – kc
1
) = 211k – 2, i.e., a

4k
 = 209, 420, 631, ..., for which all GM

a,5
 are composites. Still for

f
1
 = 21, from (3.49), with T = 87 and *

1t = 9 in (3.52),  *
1a t = 41 and a

2
 = 44, to which corresponds by (3.62) f

2,2
 = 8487. The

following positive and negative branches of other values of 3 1
2, 4

2
k

f   
 

for f
1
 = 21 appear respectively for a

4k–2
 = 211k +

44 for all positive integers k, i.e., a
4k–2

 = 255, 466, 677, ..., and for a
4k–1

 = 211k – 43 = 168, 379, 590, ..., for which all GM
a,5

are again composites. All the corresponding values of f
2
 are taken as new values of f

1
 and the process is repeated for

these values of f
1
. The next value of a

1
 for which f

2
 = 0 and f

1
 (3.62) would give a prime factor c

1
 is a

1
 = 6, yielding f

1
 = 465

and c
1
 = 4651 (not represented in Table 6), corresponding to GM

6,5
 = 4651 which is of course prime. The following values

of 3 3
2, 4

2
k

f   
 

on the positive and negative branches for f
1
 = 465 can be calculated as above, yielding new values of f

2
 that

f
1

c
1

a  f
2, a  f

2, a  f
2,

1 11 4 7 15 2014 26 19234

5 19 16 2629 27 22432

7 82 18 4270 29 30007

8 145 19 5332 30 34444

3 31 2 0 33 18003 64 262275

10 132 41 43407 72 421575

22 3450 53 122553 84 784125

30 12222 61 216117 92 1130625

4 41 9 64 50 73231 91 818101

12 214 53 92662 94 932089

30 9241 71 301291 112 1884964

33 13612 74 355939 115 2096161

6 61 16 474 77 280752 138 2929965

24 2502 85 417924 146 3673689

38 16215 99 771627 160 5305074

46 35139 107 1054527 168 6452190

7 71 4 1 75 216958 146 3156268

19 826 90 451888 161 4673263

53 53509 124 1638301 195 10078498

68 146209 139 2591326 210 13566028

10 101 27 2443 128 1308286 229 13495768

29 3268 130 1392325 231 13974505

73 136786 174 4485943 275 28107415

75 152515 176 4696390 277 28935568

Table 5: Values of a and f
2, Yielding Composite GM

a,5
 for n = 5

k = 1 k = 2 k = 3

Note: Where = (4k – 3), (4k – 2), (4k – 1) and 4k respectively from the first to the fourth lines for each value of f
1
.
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a GM
a,5

Q
5

f
1
, f

2
f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

2 31 3 3, 0 - 0
+

- - - -

3 211 21 21, 0 - - - - - -

4 781 78 1, 7 7
+

- - - 1
+

-

5 2101 210 1, 19 19
+

- - - - -

6 4651 465 465, 0 - - - - - -

7 9031 903 1, 82 82
–

- - - - -

8 15961 1596 1, 145 145
–

- - - - -

9 26281 2628 4, 64 - - 64
+

- - -

10 40951 4095 3, 132 - 132
+

- - - -

11 61051 6105 6105, 0 - - - - - -

12 87781 8778 4, 214 - - 214
+

- - -

13 122461 12246 15, 81 - - - - - -

14 166531 16653 24, 69 - - - - - -

15 221551 22155 1, 2014 2014
+

- - - - -

16 289201 28920 1, 2629 2629
+

- - 474
+

- -

17 371281 37128 37128, 0 - - - - - -

18 469711 46971 1, 4270 4270
–

- - - - -

19 586531 58653 1, 5332 5332
–

- - - 826
+

-

20 723901 72390 72390, 0 - - - - - -

21 884101 88410 33, 267 - - - - - -

22 1069531 106953 3, 3450 - 3450
–

- - - -

23 1282711 128271 54, 237 - - - - - -

24 1526281 152628 6, 2502 - - - 2502
+

- -

25 1803001 180300 180300, 0 - - - - - -

26 2115751 211575 1, 19234 19234
+

- - - - -

27 2467531 246753 1, 22432 22432
+

- - - - 2443
+

28 2861461 286146 286146, 0 - - - - - -

29 3300781 330078 1, 3007 3007
–

- - - - 3268
+

30 3788851 378885 1, 3444 3444
–

12222
–

9241
–

- - -

31 4329151 432915 432915, 0 - - - - - -

32 4925281 492528 492528, 0 - - - - - -

33 5580961 558096 3, 18003 - 18003
+

13612
–

- - -

34 6300031 630003 88, 715 - - - - - -

35 7086451 708645 708645, 0 - - - - - -

36 7944301 794430 794430, 0 - - - - - -

37 8877781 887778 1, 80707 80707
+

- - - - -

38 9891211 989121 1, 89920 89920
+

- - 16215
–

- -

39 10989031 1098903 25, 4378 - - - - - -

40 12175801 1217580 1, 110689 110689
–

- - - - -

41 13456201 1345620 1, 122329 122329
–

43407
+

- - - -

42 14835031 1483503 1483503, 0 - - - - - -

Table 6: Evolution of Values of GM
a,5

, f
1
, c

1
 and f

2
 for n = 5 and 2 < a < 50

f
1 
= 1 3 4 6 7 10

c
1 
= 11 31 41 61 71 101
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are taken as new values of f
1
 to restart the process. Instead, let’s calculate for the third value of a

1
 = 4. One has from (3.62)

f
1
 = 78 to which corresponds c

1
 = 781, which is not prime and decomposes in prime factors as 11.71, which are the prime

factors of GM
4,5

. The corresponding coefficients f
i
 are f

1
 = 1 and f

2,1
 = 7. The following values of 3 3

2, 4
2

k
f   

 

on the

positive and negative branches for f
1
 = 1 appear respectively for a

4k–3
 = 4 + kc

1
 = 11k + 4 for all positive integers k, i.e.,

a
4k–3

 = 15 (for f
2
 = 2014), 26,37, ..., and for a

4k
 = –(4 – 1 – kc

1
) = 11k – 3, i.e., a

4k
 = 8 (for f

2
 = 145), 19, 30, ..., for which all GM

a,5

are also composites. Still for f
1
 = 1, the second solution is a

2
 = 5, to which corresponds f

2,2
 = 19 by (3.62). The following

positive and negative branches of other values of 3 1
2, 4

2
k

f   
 

for f
1
 = 1 appear respectively for a

4k–2
 = 11k + 5 for all

positive integers k, i.e., a
4k–2

 = 16 (for f
2
 = 2629), 27, 38, ..., and for a

4k–1
 = 11k – 4 = 7 (for f

2
 = 82), 18, 29, ..., for which all

GM
a,5

 are again composites. And so on.

For the simpler step by step algorithm to determine whether a GM
a,5

 is prime or composite and to determine its
factors, one can simply tests the ratio from (3.31)

    1 2 1 1

10 1

a a i
R

i

     



...(3.63)

for all positive integers i until R is smaller than 1. Following Table 6 like above, if for a value of i, R becomes an integer,
the corresponding GM

a,5
 is composite.

If for all values of i until R < 1, R never becomes integer, the corresponding GM
a,5

 is prime.

3.3. Bases a Yielding Generalized Mersenne Composites for n = 7

3.3.1. Algebraic Method

For n = 7, (2.5) and (1.4), with

Q
7
(a) = (a – 1) (2(a – 1) + 1)2 ...(3.64)

yield

a6 – 3a5 + 5a4 – 5a3 + 3a2 – a – 2 (f
1
 + 14f

1
f
2
 + f

2
) = 0 ...(3.65)

which has two real general solutions

1 1

3 34
1 1 2

3

2

h h

a

 
    

  ...(3.66)

a GM
a,5

Q
5

f
1
, f

2
f
2+

f
2+

f
2+

f
2+

f
2+

f
2+

43 16317211 1631721 15, 10806 - - - - - -

44 17907781 1790778 21, 8487 - - - - - -

45 19611901 1961190 1961190, 0 - - - - - -

46 21434851 2143485 6, 35139 - - - 35139
–

- -

47 23382031 2338203 2338203, 0 - - - - - -

48 25458961 2545896 1, 231445 231445
+

- - - - -

49 27671281 2767128 1, 251557 251557
+

- - - - -

50 30024751 3002475 4, 73231 - - 73231
+

- - -

Table 6 (Cont.)

f
1 
= 1 3 4 6 7 10

c
1 
= 11 31 41 61 71 101

Notes: GM
a,5

 in bold (respectively italic) characters are prime (respectively composite), Q
5
 = (a – 1) (2(a – 1) + 1), subscripts +

and – refer to f
2+

 and f
2–

.
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with

      1 1 2 2 1 1 2 2 1 1 2 227 14 1 27 14 27 14 2h f f f f f f f f f f f f          ...(3.67)

and four other complex solutions of no interest here. One of the real solutions will be a positive integer solution for the
positive sign in front of the square root sign in (3.66), and if the discriminant of (3.66) is the square of an odd integer (2K
+ 1)2 = 1 + 8(K), i.e., if

f
1
 + 14f

1
f
2
 + f

2
 = (K)(2(K) + 1)2 = 

7
((K)) ...(3.68)

as some simple algebra would show, with K positive integers, which corresponds to relation (2.7)

Q
7
(a) = (a – 1) (2(a – 1) + 1)2 = 

7
((K)) = (K)(2(K) + 1)2 ...(3.69)

that gives the first integer solution in a of the form (2.8), a = K + 1. For integers K = 1 to 5, (K)(2(K) + 1)2 takes the
values 9, 147, 1014, 4410, 14415, etc. Only for these values does a in (3.66) take integer values greater than 1, which are
further determined by the general method.

3.3.2. Excluded f
i
 Values

Excluded integer values are f
i
   1, 4, 6, 7, 10, 11, 12, ... that do not yield integer solutions for a in (3.65). Relation (2.10)

gives the three general relations of excluded f
i
 values for integers k,

      0, 1, 1 : mod 14 1 for 0if k k k           ...(3.70)

        1, 5, 3 : 5 1 mod 14 3 for 0if k k k            ...(3.71)

        1, 3, 5 : 3 1 mod 14 5 for 0if k k k            ...(3.72)

For all other positive and negative integer values of , ,   complying with (2.11), the general expressions of f
i
 will

not be different. With (2.2), forbidden forms of factors c
i
 (2.20) corresponding to excluded values f

i
 (2.59) are of the form,

with integers k,

c
i
   0 (mod (14k – 1)) for k > 0 ...(3.73)

c
i
   0 (mod (14k + t)) for k > 0 ...(3.74)

with t being respectively 3 and 5. These forbidden forms of factors c
i
 are always composites and the product of at least

two factors, which are multiple of integers of the form (14j – 1) and/or (14j + t), with j integers and with at least once j =
k.

3.3.3. General Method

From (2.70), the first pair of solutions (a
6k–5

, a
6k

) in all k groups is

a
6k–5

 = a
1
 + (k – 1)c

1
 < a

6k
 = kc

1
 – a

1
 + 1 ...(3.75)

From (2.46), with the coefficients (2.26)

A
0
 = 4(a

1
 – 1) (3(a

1
 – 1) + 2) + 1 = (3a

1
(a

1
 – 1) + 1)(a

1
 (a

1
 – 1) + 1) ...(3.76)

A
1
 = 2(3(a

1
 – 1) + 1) = 3a

1
(a

1
 – 1) + 2 ...(3.77)

the function

           2*
1 1 1 1 1 1*

1 12

3 1 2 4 3 1 4 1
,

2

a a t c a a a a
F a t c

       
 ...(3.78)

yields

 
         2*

1 1 1 1 1 1 1*
2 1 2 1 3 2 4 3 1 4 1

2

a a a t c a a a a
a t

          
 ...(3.79)
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which takes positive integer values first, for the positive sign in front of the root sign and if the first square root is
greater than the first term in (3.79) yielding

     1 1 1 1*

1

3 1 1 1 1a a a a
t

c

   
 ...(3.80)

that verifies the first condition (2.54), and second, for those values of integers t* that yield positive integers value to
a(t*), i.e., if the discriminant in (3.79) is the square of an odd integer, i.e.,

         2 2*
1 1 1 1 1 12 1 3 2 4 3 1 4 1 2 1a a t c a a a a T          ...(3.81)

with T positive integers, yielding

            1 1 1*

1

2 1 2 2 1 1 2 1 2 1 1T T a a a
t

c

            
 ...(3.82)

The first four smallest integer values of T such that t* in (3.82) is integer and complies with (3.80) give *
1t to *

4t ,

yielding the four differences  *
1a t to  *

4a t . These four values of a(t*) are related in pairs by (2.64) and  *
3a t can

be found from  *
2a t and  *

4a t from  *
1a t , as

   * *
3 1 1 2 1 1 32 1 1a t c a a t c a a         ...(3.83)

   * *
4 1 1 1 1 1 22 1 1a t c a a t c a a         ...(3.84)

yielding, from (2.47) and (3.78),

        * *
3 2 1 3 1 1 3 3 3 1 12 1 2 1 2 1 1 2t t c a c c a a a a a           ...(3.85)

        * *
4 1 1 2 1 1 2 2 2 1 12 1 2 1 2 1 1 2t t c a c c a a a a a           ...(3.86)

Note that  *
4a t in (3.84) verifies the condition (2.57) as a

1
 < a

2
. The fourth condition (2.62) yields that

           1 1 1 1*
5 1 1 1 1 1 1 1

1

1 3 1 4 1
2 1 2 1 3 1 2

a a a a
t c a c c a a a

c

   
         ...(3.87)

The first group of three pairs of solutions read then

   * *
1 2 1 1 3 1 2a a a a t a a a t      

   * *
4 1 3 1 3 5 1 4 1 21 1a a a t c a a a a t c a            

6 1 1 1a c a    ...(3.88)

The other groups of three pairs of solutions are found by adding (k – 1)c
1
 to the first six solutions as

a
6k–5

 = a
1
 + (k – 1)c

1
 < ... < a

6(k–1)+j
 = a

j
 + (k – 1)c

1 
< ... < a

6k
 = a

6
 + (k – 1)c

1
...(3.89)

for 1 < j < 6 and for all positive integers k. These relations for a can be combined into the single general relation (2.78),
yielding all values of solutions a.
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 

    1 14

15 2 1
6

2

1 2 1

2

j

j
k

c a c
a kc



  
  

 

   
  ...(3.90)

for 1 < j < 3 for all positive integers k. The differences f
2
(r), f

2
(s) and f

2
(t*) are found from (2.79), (2.80) and (2.49) and

a single general relation for  5 2 1
2, 6

2

j
k

f   
  

 

similar to (3.18) and (3.60) can be found in function of a
1
, c

1
 and k. However,,

for increasing n, these expressions become more and more complicated and values of f
2
 increase very rapidly.

3.3.4. Example of Calculations

From the algebraic method, starting with the first non-excluded value of f
1
 = 2, yielding c

1
 = 29, the smallest value of f

2

that satisfies (3.68) is f
2,1

 = 5 to which corresponds K = 2 as

c
1
f
2,1

 + f
1
 = 29 . 5 + 2 = (K = 2)(2(K = 2) + 1)2 = 147 ...(3.91)

yielding from (2.8) the first seed solution a
1
 = 3 for this value of f

1
 = 2. From (3.82), the first two integer values of T are

4 and 15, and yield the first integer values of *
1t = 21 and *

2t = 41, giving from (3.79),  *
1a t = 2 and  *

2a t = 3, yielding

a
2
 = 5 and a

3
 = 6. The corresponding values of f

2
 are 152 and 497. From (3.88), the other solutions for k = 1, are a

4
 = 24,

a
5
 = 25 and a

6
 = 27. Other values are given in Table 7 for 1 < f

1
 < 10 and k = 1 to 3, with the first three values of f

2
.

Corresponding composite GM
a,7

 can be found in Sequence A022523 in (Sloane, 2024).

Note as well that for f
1
 = 9, which is the value of 

7
((K)) for K = 1, f

2
 = 0 in (3.68), meaning that a

1
 = 2 does not yield

a composite but a prime generalized Mersenne, which is the Mersenne prime M
7
 = 127.

Like for the previous cases, one can also test the ratio

    2
1 2 1 1

14 1

a a i
R

i

     



...(3.92)

to find whether a GM
a,7

 is prime or composite.

3.4. Bases a Yielding Generalized Mersenne Composites for n = 11

3.4.1. Algebraic Method

Similarly, for the next prime value of the exponent n = 11, from (2.5) and (1.4), with

Q
11

(a) = (a – 1) (2(a – 1) + 1) (2(a – 1) (2(a – 1) + 1) (2(a – 1) + 3) + 1) ...(3.93)

one has

a10–5a9 + 15a8–30a7 + 42a6–42a5 + 30a4–15a3 + 5a2–a–2(f
1
 + 22f

1
f
2
 + f

2
) = 0 ...(3.94)

which has at least two real solutions in a, whose integer values can be found in the form (2.5), if

f
1
 + 22f

1
f
2
 + f

2
 = 

11
((K)) = (K) (2(K) + 1) (2(K) (2(K) + 1) (2(K) + 3) + 1) ...(3.95)

with K positive integers, which corresponds to relation (3.93), giving the first integer solution in a of the form (2.8), a =
K + 1. For integers K = 1 to 3, 

11
((K)) takes the values 93, 7959, 182598, ... Only for these values does a in (3.94) take

integer values greater than 1, which are further determined by the general method.

3.4.2. Excluded f
i
 Values

Excluded integer values are f
i
   2, 5, 6, 7, 8, 10, ... that do not yield integer solutions for a. Like above, (2.10) gives the

five general relations of excluded f
i
 values for all non-negative integers k for (, , ) taking values:

(0, –1, –1) f
i
   –k(mod (22k – 1)) ...(3.96)

(–1, 7, +3) f
i
   (7k – 1) (mod (22k + 3)) ...(3.97)

(2, +9, +5) f
i
   (+9k + 2) (mod (22k + 5)) ...(3.98)
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(–1, 3, +7) f
i
   (3k – 1) (mod (22k + 7)) ...(3.99)

(2, +5, +9) f
i
   (+5k + 2) (mod (22k + 9)) ...(3.100)

with k > 0 for (3.96) and k > 0 for (3.97) to (3.100). For all other positive and negative integer values of , , and 
complying with (2.11), the general expressions of f

i
 will not be different. With (2.2), forbidden forms of factors c

i
 (2.20)

corresponding to excluded values f
i
 (3.96) to (3.100) are of the form

c
i
   0 (mod (22k – 1)) for k > 0 ...(3.101)

c
i
   0 (mod (22k + t)) for k > 0 ...(3.102)

with t being respectively 3, 5, 7 and 9. These forbidden forms of factors c
i
 are always composites and the product of at

f
1

c
1

a  f
2, a  f

2, a  f
2,

2 29 3 5 32 16864838 61 845770532

5 152 34 24396323 63 1027995155

6 497 35 29103317 64 1130704118

24 2910458 53 361180880 82 5053582763

25 3736562 54 404468153 83 5437201805

27 5981633 56 504087722 85 6277522592

3 43 14 70872 57 378409707 100 11284825929

15 108714 58 420409758 101 11982616629

20 641409 63 693299058 106 16034856534

24 1962867 67 1005898512 110 20046175944

29 6240777 72 1553974827 115 26204499864

30 7674624 73 1689012483 116 27607949169

5 71 3 2 74 1110545024 145 64112798885

16 98165 87 2950399664 158 107502085202

22 697454 93 4411898327 164 134535998039

50 103648820 121 21561120305 192 347327466509

56 205894985 127 28859495324 198 417953698502

69 727730819 140 51902084075 211 612683956250

8 113 15 41369 128 19010172728 241 856231952624

40 16819844 153 55658816228 266 1549838391149

46 39284579 159 70159868897 272 1772221206512

68 418632878 181 153028196714 294 2828436912167

74 697776077 187 186200218007 300 3193585687034

99 4041707627 212 396064508582 325 5166363067634

9 127 2 0 129 17726293065 256 1095267058953

18 113544 145 35842588353 272 1576858238865

42 20126580 169 90112457685 296 2621304129213

86 1538286498 213 362519950119 340 6028505548923

110 6787287918 237 688910587995 364 9082321748295

126 15383781558 253 1020335724819 380 11760904789263

Table 7: Values of a and f
2, Yielding Composite GM

a,7
 for n = 7

k = 1 k = 2 k = 3

Note: Where = (6k – i) with 5 > i > 0 respectively from the first to the sixth line for each value of f
1
. Note a

1
 yields a prime GM

a,7

for f
1
 = 9 and k = 1.
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least two factors, which are multiple of integers of the form (22j – 1) and/or (22k + t), with j integers and with at least once
j = k.

3.4.3. General Method

From (2.70), the first pair of solutions (a
10k–9

, a
10k

) in all k groups is

a
10k–9

 = a
1
 + (k – 1)c

1
 < a

10k
 = kc

1
 – a

1
 + 1 ...(3.103)

From (2.46), with the coefficients (2.26),

A
0
 = 80((a

1
 – 1))3 ((a

1
 –1) + 2) + 4(a

1
 – 1) (21(a

1
 – 1) + 4) + 1 ...(3.104)

A
1
 = 2[20((a

1
 – 1))2 (2(a

1
 – 1) + 3) + 21(a

1
 – 1) + 4] ...(3.105)

A
2
 = 40(a

1
 – 1) ((a

1
 – 1) + 1) + 7 ...(3.106)

A
3
 = 5(2(a

1
 – 1) + 1) ...(3.107)

one has the function

   
  2 *

0 1
*

1 14

2 2 4
,

2

H H G G A t c
F a t c

     
 ...(3.108)

where the sign in front of the first (respectively the second) square root must be positive (respectively negative) for
F

(4)
(a

1
, t*c

1
) to be positive, and with

 2
3 3 24

4

A A G A
H

  
 ...(3.109)

3 32 3 2 3 2

3

A
G U U V U U V       ...(3.110)

     * 2 * 2 3
2 0 1 1 3 3 2 0 1 1 2

4 4

6 2 3

A A t c A A A A A t c A A
U

          
 

...(3.111)

 * 2
1 3 0 1 2

4

3 3

A A A t c A
V

      
 

...(3.112)

The sign in front of the square root in (3.109) must be positive or negative depending on the value of t*. Relation
(3.108) yields

           
1

2
* 2 2 *

1 1 1 3 2 0 1

1
2 1 3 3 1 2 4 2 2 4

2
a t a a a A G A H G G A t c

 
                  

 

 ...(3.113)

which takes positive integer values first, for the positive sign in front of the first root sign and if the first square root is
greater than the first term in (3.113) and second, for those values of integers t* that yield positive integers value to a(t*),
i.e., if the discriminant in (3.113) is the square of an odd integer (2T + 1)2

         22 2 *
1 1 3 2 0 13 3 1 2 4 2 2 4 2 1a a A G A H G G A t c T           ...(3.114)

with T positive integers. The first condition (2.54) is verified if

          3

1 1 1 1*

1

80 1 1 2 4 1 21 1 8 1a a a a
t

c

           
 ...(3.115)
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The third condition (2.59) is verified if

       4 3 2* 3 2 0
8 1 1 1 3 1 1 1 2 1 1 1 1 1 1

1

2 1 2 1 2 1 2 1
A

t c c a A c c a A c c a A c a
c

             ...(3.116)

The fourth condition (2.62) is verified if

       4 3 2* 3 2 0
9 1 1 1 3 1 1 1 2 1 1 1 1 1 1

1

2 1 2 1 2 1 2 1
A

t c c a A c c a A c c a A c a
c

             ...(3.117)

The first eight smallest integer values of T in (3.114) yield *
1t to *

8t that satisfy (3.115) and (3.116) and that render

 *
1a t to  *

8a t  (3.113) integers. These eight values of a(t*) are related in pairs by (2.64) and  *
9 ja t  can be found

from  *
ja t , as

   * *
9 1 1 1 1 12 1 1j j ja t c a a t c a a          ...(3.118)

for 1 < j < 4. Note that  *
8a t in (3.118) verifies again the condition (2.57) as a

1
 < a

2
. The first group of five pairs of

solutions read then

     * * *
1 2 1 1 3 1 2 4 1 3a a a a t a a a t a a a t          

   * *
5 1 4 6 1 5 1 5 1a a a t a a a t c a         

   * *
7 1 6 1 4 8 1 7 1 31 1a a a t c a a a a t c a            

 *
9 1 8 1 2 10 1 11 1a a a t c a a c a          ...(3.119)

The other groups of five pairs of solutions are found by adding (k – 1)c
1
 to the first ten solutions as

a
10k–9

 = a
1
 + (k – 1)c

1
 < ... < a

10(k–1)+j
 = a

j
 + (k – 1)c

1
 < ... < a

10k
 = a

10
 + (k – 1)c

1
...(3.120)

for 1 < j < 10 and for all positive integers k. The relations for a in (3.119) can be combined into the single general relation
(2.78), yielding all values of solutions a

 

    1 16

19 2 1
10

2

1 2 1

2

j

j
k

c a c
a kc



  
  

 

   
  ...(3.121)

with 1 < j < 5 and k > 0.

3.4.4. Example of Calculations

From the algebraic method, starting with the first non-excluded value of f
1
 = 1, yielding c

1
 = 23, the smallest value of f

2

that satisfies (3.95) is f
2,1

 = 4 to which corresponds K = 1 as

c
1
f
2,1

 + f
1
 = 23 . 4 + 1 = (1) (2(1) + 1) (2(1) (2(1) + 1) (2(1) + 3) + 1) = 93 ...(3.122)

yielding from (2.8) the first seed solution a
1
 = 2 for this value of f

1
 = 1. From (3.113), the values of t* for *

1t to *
8t vary

between 240 and 1375867180, yielding respectively the first four a(t*), i.e.,  *
1a t = 1,  *

2a t = 2,  *
3a t = 7, and

 *
4a t  = 9, yielding a

2
 = 3, a

3
 = 4, a

4
 = 9, and a

5
 = 11. The corresponding values of f

2
 vary between 346 and 366228598.

From (3.119), the other solutions for k = 1, are a
6
 = 13, a

7
 = 15, a

8
 = 20, a

9
 = 21 and a

10
 = 22. Other values are given in Table

8 for 1 < f
1
 < 10 and k = 1 to 3; the corresponding values of f

2
 can be found in (Pletser, 2024b). Corresponding composite

GM
a,11

 can be found in Sequence A022527 in (Sloane, 2024).
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Note that the first value of a for f
1
 = 1 and k = 1, i.e., a

1
 = 2, does not yield a prime as f

2
 = 4 is not nil, which explains

why the fifth Mersenne number M
11

 is not a prime but a composite, GM
2,11

 = M
11

 = 2047 = 23 . 89 = (2 . 11 . 1 + 1) (2 . 11
. 4 + 1).

Like for the previous cases, one can also test the ratio

     2 2 2 2 1

22 1

i
R

i

          



...(3.123)

with  = (a – 1), to find whether a GM
a,11

 is prime or composite.

3.5. Bases a Yielding Generalized Mersenne Composites for n = 13

3.5.1. Algebraic Method

For n = 13, from (2.5) and (1.4), with

Q
13

(a) = (a – 1) (2(a – 1) + 1)2 (2(a – 1) (2(a – 1) (2(a – 1) + 5) + 3) + 1) ...(3.124)

one has

a12 – 6a11 + 22a10 – 55a9 + 99a8 – 132a7 + 132a6 – 99a5 + 55a4 – 22a3 + 6a2 – a – 2(f
1
 + 26f

1
f
2
 + f

2
) = 0 ...(3.125)

which has at least two real solutions in a, whose integer values can be found in the form (2.5), if

f
1
 + 26f

1
f
2
 + f

2
 = 

13
((K)) = (K) (2(K) + 1)2 [2(K) (2(K) (2(K) + 5) + 3) + 1] ...(3.126)

with K positive integers, which corresponds to (3.124), giving the first integer solution in a of the form (2.8), a = K +1.
For integers K = 1 to 3, 

13
((K)) takes the values 315, 61005, 2519790, ... Only for these values does a in (3.125) take

integer values greater than 1, which are further determined by the general method.

3.5.2. Excluded f
i
 Values

Excluded integer values are f
i
   1, 4, 7, 8, 9, 10, 11, ... that do not yield integer solutions for a. As above, (2.10) gives the

five general relations of excluded f
i
 values for all integers k for (, , ) taking values:

(0, –1, –1) f
i
   –k (mod (26k – 1)) ...(3.127)

(–1, +9, +3) f
i
   (+9k + 1) (mod (26k + 3)) ...(3.128)

(–1,  5, +5) f
i
   (  5k – 1) (mod (26k + 5)) ...(3.129)

(–3,  11, +7) f
i
   (  11k – 3) (mod (26k + 7)) ...(3.130)

k = 1 2 3 1 2 3 1 2 3 1 2 3

a+
2 25 48 12 79 146 2 91 180 62 261 460

3 26 49 15 82 149 7 96 185 63 262 461

4 27 50 17 84 151 24 113 202 69 268 467

9 32 55 25 92 159 31 120 209 81 280 479

11 34 57 32 99 166 38 127 216 83 282 481

a–
13 36 59 36 103 170 52 141 230 117 316 515

15 38 61 43 110 177 59 148 237 119 318 517

20 43 66 51 118 185 66 155 244 131 330 529

21 44 67 53 120 187 83 172 261 137 336 535

22 45 68 56 123 190 88 177 266 138 337 536

Table 8: Values of a Yielding Composite GM
a,11

 for n = 11

Note: Where 
+
 = (10k – i) with 9 > i > 5 and 

–
 = (10k – j) with 4 > j > 0, respectively from the first to the fifth row for a+

 and a.

f
1
 = 1, c

1
 = 23 f

1
 = 3, c

1
 = 67 f

1
 = 4, c

1
 = 89 f

1
 = 9, c

1
 = 199
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(1, +3, +9) f
i
   (+3k + 1) (mod (26k + 9)) ...(3.131)

(–3, +7,  11) f
i
   (+7k– 3) (mod (26k   11)) ...(3.132)

with k > 0 for (3.127) and k > 0 for (3.128) to (3.132). For all other positive and negative integers ,  and  complying with
(2.11), the general expressions of f

i
 will not be different. With (2.2), forbidden forms of factors c

i
 (2.20) corresponding to

excluded values f
i
 (3.127) to (3.132) are of the form

c
i
   0 (mod (26k – 1)) for k > 0 ...(3.133)

c
i
   0 (mod (26k + t)) for k > 0 ...(3.134)

with t being all odd integers from 3 to 11. These forbidden forms of factors c
i
 are always composites and the product of

at least two factors, which are multiple of integers of the form (26j – 1) and/or ((26j + t), with j integers and with at least
once j = k.

3.5.3. General Method

From (2.70), the first pair of solutions (a
12k–11

, a
12k

) in all k groups is

a
12k–11

 = a
1
 + (k – 1)c

1
 < a

12k
 = kc

1
 – a

1
 + 1 ...(3.135)

From (2.46), with the coefficients (2.26)

A
0
 = 4(4((122 + 7 (5 + 4)) + 9) + 5) + 1 ...(3.136)

A
1
 = 8(2(5(3+ 7) + 21) + 9) + 5 ...(3.137)

A
2
 = 4(2(5(4 + 7) + 14) + 3) ...(3.138)

A
3
 = 2(5(6 + 7) + 7) ...(3.139)

A
4
 = 12 + 7 ...(3.140)

where, for convenience,  is written instead of (a
1
 – 1), let F

(5)
 (a

1
, t*c

1
) be one of the real roots of the polynomial (2.46)

with t* the integer t that yields integer values to a

 
       2 *

1 1 1 15*
2 1 2 1 4 ,

2

a a F a t c
a t

    
 ...(3.141)

The first condition (2.54) is verified if

    2

*

1

4 4 12 7 5 9 5 1
t

c

          
 ...(3.142)

The third condition (2.59) is verified if

         5 4 3 2* 4 3 2 0
10 1 1 1 4 1 1 1 3 1 1 1 2 1 1 1 1 1 1

1

2 1 2 1 2 1 2 1 2 1
A

t c c a A c c a A c c a A c c a A c a
c

               

...(3.143)

The fourth condition (2.62) is verified if

         5 4 3 2* 4 3 2 0
11 1 1 1 4 1 1 1 3 1 1 1 2 1 1 1 1 1 1

1

2 1 2 1 2 1 2 1 2 1
A

t c c a A c c a A c c a A c c a A c a
c

               

...(3.144)

The first ten integer values of *
1t  to *

10t that satisfy (3.142) and (3.143) and that render  *
1a t  to  *

10a t integers, are

related in pairs by (2.64) and can be found from  *
ja t , as
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   * *
11 1 1 1 1 12 1 1j j ja t c a a t c a a          ...(3.145)

for 1 < j < 5. The first group of six pairs of solutions can now be written as

     * * *
1 2 1 1 3 1 2 4 1 3a a a a t a a a t a a a t          

     * * *
5 1 4 6 1 5 7 1 6 1 6 1a a a t a a a t a a a t c a             

   * *
8 1 7 1 5 9 1 8 1 41 1a a a t c a a a a t c a            

   * *
10 1 9 1 3 11 1 10 1 21 1a a a t c a a a a t c a            

12 1 1 1a c a    ...(3.146)

The other groups of six pairs of solutions are found by adding (k – 1)c
1
 to the first twelve solutions as

a
12k–11

 = a
1
 + (k – 1)c

1
 < ... < a

12(k–1)+j
 = a

j
 + (k – 1)c

1
 < ... < a

12k
 = a

12
 + (k – 1)c

1
...(3.147)

for 1 < j < 12 and for all positive integers k. The relations for a in (3.146) can be combined into the single general relation
(2.78), yielding all values of solutions a

 

    1 17

111 2 1
12

2

1 2 1

2

j

j
k

c a c
a kc



  
  

 

   
  ...(3.148)

with 1 < j < 6 and k > 0.

3.5.4. Calculation Methods

From the algebraic method, starting with the first non-excluded value of f
1
 = 2, yielding c

1
 = 53, the smallest value of f

2

that satisfies (3.126) is f
2,1

 = 1151 to which corresponds K = 2 as

c
1
f
2,1

 + f
1
 = 53 . 1151 + 2 = (2) (2(2) + 1)2 (2(2) (2(2) (2(2) + 5) + 3) + 1) = 61005 ...(3.149)

yielding from (2.8) the first seed solution a
1
 = 3 for this value of f

1
 = 2. Parameters *

1t  to *
10t vary between 3379565 and

642166339773, yielding respectively the first five a(t*), i.e.,  *
1a t = 4,  *

2a t = 13,  *
3a t = 17,  *

4a t = 19, and

 *
5a t = 20, yielding a

2
 = 7, a

3
 = 16, a

4
 = 20, a

5
 = 22, and a

6
 = 23. From (3.146), the other solutions for k = 1, are a

7
 = 31,

a
8
 = 32, a

9
 = 34, a

10
 = 38, a

11
 = 47, and a

12
 = 51. Other values are given in Table 9 for 2 < f

1
 < 10 and k = 1 to 3; the

corresponding values of f
2
 can be found in (Pletser, 2024b). Corresponding composite GM

a,13
 can be found in Sequence

A022529 in (Sloane, 2024).

Note that the first value of a for f
1
 = 315 and k = 1, i.e., a

1
 = 2, one has f

2
 = 0 in (3.149), meaning that it does not yield

a composite but a generalized Mersenne prime, which is the Mersenne prime M
13

 = 8191.

Like for the previous cases, one can also test the ratio

     2
2 2 2 2 5 1

26 1

i
R

i

          



...(3.150)

with  = (a – 1), to find whether a GM
a,13

 is prime or composite.

3.6. Bases a Yielding Generalized Mersenne Composites for n = 17

3.6.1. Algebraic Method

For n = 17, from (2.5) and (1.4), with
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Q
17

(a) = (2+ 1)(2+ 1) ((2)2 (2+ 3) (2+ 7) + 2(14+ 3) + 1) ...(3.151)

with  = (a – 1), one has

a16 – 8a15 + 40a14 – 140a13 + 365a12 – 728a11 + 1144a10 – 1452a9 + 1534a8

– 1248a7 + 780a6 – 364a5 + 140a4 – 40a3 + 8a2 – a – 2(f
1
 + 34f

1
f
2
 + f

2
) = 0 ...(3.152)

which has at least two real solutions in a, whose integer values can be found in the form (2.5), if

f
1
 + 34f

1
f
2
 + f

2
 = 

17
((K)) = (2 + 1) (2(2 + 1) ((2)2 (2+ 3) (2 + 7) + 2 (14 + 3)) + 1) ...(3.153)

with  = (K), and K positive integers, which corresponds to (3.151), giving the first integer solution in a of the form
(2.8), a = K + 1. For integers K = 1 to 3, 17 ((K)) takes the values 3855, 3794385, 501492030, ... Only for these values does
a in (3.152) take integer values greater than 1, which are further determined by the general method.

3.6.2. Excluded f
i
 Values

Excluded integer values are f
i
   1, 2, 5, 6, 8, 10, ... that do not yield integer solutions for a. As previously, (2.10) gives the

eight general relations of excluded f
i
 values for all integers k for (, , ) taking values:

(0, –1, –1) f
i
   –k (mod (34k – 1)) ...(3.154)

(–1,  11, +3) f
i
   (  11k – 1) (mod (34k + 3)) ...(3.155)

(1, +7, +5) f
i
   (+7k + 1) (mod (34k + 5)) ...(3.156)

(1, +5, +7) f
i
   (+5k + 1) (mod (34k + 7)) ...(3.157)

(5, +19, +9) f
i
   (+19k + 5) (mod (34k + 9)) ...(3.158)

(–1,  3, +11) f
i
   (  3k – 1) (mod (34k + 11)) ...(3.159)

(–5,  13, +13) f
i
   (  13k – 5) (mod (34k  +13)) ...(3.160)

(–4,  9, +15) f
i
   (  9k – 4) (mod (34k + 15)) ...(3.161)

with k > 0 for (3.154) and k > 0 for (3.155) to (3.161). For all other positive and negative integers , , and  complying with
(2.11), the general expressions of f

i
 will not be different. With (2.2), forbidden forms of factors c

i
 (2.20) corresponding to

excluded values f
i
 (3.154) to (3.161) are of the form, with integers k,

k = 1 2 3 1 2 3 1 2 3 1 2 3

a+
3 56 109 5 84 163 4 135 266 8 165 322

7 60 113 7 86 165 19 150 281 12 169 326

16 69 122 15 94 173 21 152 283 22 179 336

20 73 126 22 101 180 31 162 293 29 186 343

22 75 128 32 111 190 59 190 321 63 220 377

23 76 129 35 114 193 63 194 325 70 227 384

a–
31 84 137 45 124 203 69 200 331 88 245 402

32 85 138 48 127 206 73 204 335 95 252 409

34 87 140 58 137 216 101 232 363 129 286 443

38 91 144 65 144 223 111 242 373 136 293 450

47 100 153 73 152 231 113 244 375 146 303 460

51 104 157 75 154 233 128 259 390 150 307 464

Table 9: Values of a Yielding Composite GM
a,13

 for n = 13

Note: Where 
+
 = (12k – i) with 11 > i > 6 and 

–
 = (12k – j) with 5 > j > 0, respectively from the first to the sixth row for a+

 and
a–

.

f
1
 = 1, c

1
 = 53 f

1
 = 3, c

1
 = 79 f

1
 = 5, c

1
 = 131 f

1
 = 6, c

1
 = 157
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c
i
   0 (mod (34k – 1)) for k > 0 ...(3.162)

c
i
   0 (mod (34k + t)) for k > 0 ...(3.163)

with t being respectively all odd integers from 3 to 15. These forbidden forms of factors c
i
 are always composites and the

product of at least two factors, which are multiple of integers of the form (34j – 1) and/or (34j + t), with j integers and with
at least once j = k.

3.6.3. General Method

From (2.70), the first pair of solutions (a
16k–15

, a
16k

) in all k groups is

a
16k–15

 = a
1
 + (k – 1)c

1
 < a

16k
 = kc

1
 – a

1
 + 1 ...(3.164)

From (2.46), with the coefficients (2.26),

A
0
 = 4(2(4(42 (82 + 21 (2 + 3)) + 55 (3+ 1)) + 39) + 7) + 1 ...(3.165)

A
1
 = 4(2(282 (4(2 + 9) + 45) + 165 (4 + 1)) + 39) + 7 ...(3.166)

A
2
 = 2(4(562 ((4 + 15) + 30) + 55 (6 + 1)) + 13) ...(3.167)

A
3
 = 5(414(2 + 3)2 + 33) + 11) ...(3.168)

A
4
 = 2(14(4(4 + 9) + 3) + 33) ...(3.169)

A
5
 = 14(4(2 + 3) + 3) ...(3.170)

A
6
 = 4(4 + 3) ...(3.171)

where, for convenience,  was written instead of (a
1
 – 1), let F

(7)
 (a

1
, t*c

1
) be one of the real roots of the polynomial

(2.46) and with t* the value of the integer t that yields integer values to

 
       2 *

1 1 1 17*
2 1 2 1 4 ,

2

a a F a t c
a t

    
 ...(3.172)

The first condition (2.54) is verified if

       2 2

*

1

4 2 4 4 8 21 2 3 55 3 3 39 7 1
t

c

             
 ...(3.173)

The third condition (66) is verified if

         7 6 5 4 3* 6 5 4 3 2
14 1 1 1 6 1 1 1 5 1 1 1 4 1 1 1 3 1 1 12 1 2 1 2 1 2 1 2 1t c c a A c c a A c c a A c c a A c c a              

   2 0
2 1 1 1 1 1 1

1

2 1 2 1
A

A c c a A c a
c

       ...(3.174)

The fourth condition (2.62) is verified if

         7 6 5 4 3* 6 5 4 3 2
15 1 1 1 6 1 1 1 5 1 1 1 4 1 1 1 3 1 1 12 1 2 1 2 1 2 1 2 1t c c a A c c a A c c a A c c a A c c a              

   2 0
2 1 1 1 1 1 1

1

2 1 2 1
A

A c c a A c a
c

       ...(3.175)

The first fourteen integer values of *
1t to *

14t that satisfy (3.173) and (3.174) and that render  *
1a t to  *

14a t (3.172)

integers, are related in pairs by (2.64) and can be found from  *
ja t , as
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   * *
15 1 1 1 1 12 1 1j j ja t c a a t c a a          ...(3.176)

for 1 < j < 7. The first group of eight pairs of solutions can now be written as

     * * *
1 2 1 1 3 1 2 4 1 3a a a a t a a a t a a a t          

     * * *
5 1 4 6 1 5 7 1 6a a a t a a a t a a a t          

   * *
8 1 7 9 1 8 1 8 1a a a t a a a t c a         

   * *
10 1 9 1 7 11 1 10 1 61 1a a a t c a a a a t c a            

   * *
12 1 11 1 5 13 1 12 1 41 1a a a t c a a a a t c a            

   * *
14 1 13 1 3 15 1 14 1 21 1a a a t c a a a a t c a            

16 1 1 1a c a    ...(3.177)

The other groups of eight pairs of solutions are found by adding (k – 1)c
1
 to the first 16 solutions as

a
16k–15

 = a
1
 + (k – 1)c

1
 < ... < a

16(k–1)+j
 = a

j
 + (k – 1)c

1
 < ... < a

16k
 = a

16
 + (k – 1)c

1
...(3.178)

for 1 < j <16 and for all positive integers k. The relations for a in (3.177) can be combined into the single general relation
(2.78), yielding all values of solutions

 

    1 19

115 2 1
16

2

1 2 1

2

j

j
k

c a c
a kc



  
  

 

   
  ...(3.179)

with 1 < j < 8 and k > 0.

3.6.4. Calculation Methods

From the algebraic method, starting with the first non-excluded value of f
1
 = 3, yielding c

1
 = 103, one has that the smallest

value of f
2
 that satisfies (3.152) is f

2,1
 = 4119183862359 to which corresponds K = 8 as

c
1
f
2,1

 + f
1
 = 103 . 4119183862359 + 3 = (2) (2(2) ((2(2) (2) + 2 (14 + 3)) + 1) = 424275937822980

...(3.180)

where  is written here for (K = 8), yielding from (2.8) the first seed solution a
1
 = 9 for this value of f

1
 = 3. The first seven

values of a(t*) are  *
1a t = 3,  *

2a t = 5,  *
3a t = 10,  *

4a t = 17,  *
5a t = 20,  *

6a t = 24, and  *
7a t = 35,

yielding a
2
 = 12, a

3
 = 14, a

4
 = 19, a

5
 = 26, a

6
 = 29, a

7
 = 33, and a

8
 = 44. From (3.177), the other solutions for k = 1, are a

9
 =

60, a
10

 = 71, a
11

 = 75, a
12

 = 78, a
13

 = 85, a
14

 = 90, a
15

 = 92 and a
16

 = 95. Other values are given in Table 10 for 3 < f
1
 < 10 and

k = 1 to 3; the corresponding values of f
2
 can be found in (Pletser, 2024b). Corresponding composite G

Ma,17
 can be found

in Sequence A022533 in (Sloane, 2024).

Note as well that for f
1
 = 3855, which is the value of 

17
((K)) for K = 1 (i.e., for a = 2), one has f

2
 = 0 in (3.153), meaning

that a = 2 does not yield a composite but a generalized Mersenne prime, which is the Mersenne prime M
17

 = 131071.

Like for the previous cases, one can also test the ratio

            2
2 2 2 2 2 3 2 7 2 14 3 1

34 1

i
R

i

               



...(3.181)

with here  = (a – 1), to find whether a GM
a,17

 is prime or composite.
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k = 1 2 3 1 2 3 1 2 3 1 2 3

a+
9 112 215 6 143 280 10 249 488 11 318 625

12 115 218 15 152 289 33 272 511 35 342 649

14 117 220 27 164 301 42 281 520 40 347 654

19 122 225 37 174 311 43 282 521 63 370 677

26 129 232 55 192 329 49 288 527 77 384 691

29 132 235 60 197 334 91 330 569 115 422 729

33 136 239 64 201 338 99 338 577 143 450 757

44 147 250 65 202 339 105 344 583 145 452 759

a–
60 163 266 73 210 347 135 374 613 163 470 777

71 174 277 74 211 348 141 380 619 165 472 779

75 178 281 78 215 352 149 388 627 193 500 807

78 181 284 83 220 357 191 430 669 231 538 845

85 188 291 101 238 375 197 436 675 245 552 859

90 193 296 111 248 385 198 437 676 268 575 882

92 195 298 123 260 397 207 446 685 273 580 887

95 198 301 132 269 406 230 469 708 297 604 911

Table 10: Values of a Yielding Composite GM
a,17

 for n = 17

Note: Where 
+
 = (16k – i) with 15 > i > 8 and 

–
 = (16k – j) with 7 > j > 0, respectively from the first to the eighth row for a+

 and
a–

.

f
1
 = 3, c

1
 = 103 f

1
 = 4, c

1
 = 137 f

1
 = 7, c

1
 = 239 f

1
 = 9, c

1
 = 307

n f
1

c
1

a+
n f

1
c

1
a+

3 1 7 2 11 1 23 2, 3, 4, 9, 11

2 13 6 2 45 f
1
 excluded value

3 19 3 3 67 12, 15, 17, 25, 32

4 25 f
1
 excluded value 4 89 2, 7, 24, 31, 38

5 31 9 5 111 f
1
 excluded value

6 37 4 6 133 f
1
 excluded value

7 43 17 7 155 f
1
 excluded value

8 49 23 8 177 f
1
 excluded value

9 55 f
1
 excluded value 9 199 62, 63, 69, 81, 83

10 61 5 10 221 f
1
 excluded value

5 1 11 4, 5 13 1 27 f
1
 excluded value

2 21 f
1
 excluded value 2 53 3, 7, 16, 20, 22, 23

3 31 2, 10 3 79 5, 7, 15, 22, 32, 35

4 41 9, 12 4 105 f
1
 excluded value

5 51 f
1
 excluded value 5 131 4, 19, 21, 31, 59, 63

6 61 16, 24 6 157 8, 12, 22, 29, 63, 70

7 71 4, 19 7 183 f
1
 excluded value

8 81 f
1
 excluded value 8 209 f

1
 excluded value

9 91 f
1
 excluded value 9 235 f

1
 excluded value

10 101 27, 29 10 261 f
1
 excluded value

Table 11: f
1
, c

1
 and First Values of a+

 for Prime n, 3 < n < 17
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4. Conclusion

It was shown that with the proposed generalization of Mersenne numbers, the distribution of composite Generalized

Mersenne numbers follow simple laws demonstrated in three theorems, as composite GM
a,n

 appear periodically in an

infinite number of groups of pairs of solutions in a, embedded into each others. The most remarkable aspect of

composite GM
a,n

 is that their distribution is completely characterized once the first values of a yielding composite GM
a,n

are found, as composite GM
a,n

 are spaced regularly, separated by intervals of values depending on their factors c
1
 = 2nf

1

+ 1. Three methods were presented to calculate composite GM
a,n

 and applied for the first six prime exponents n from 3

to 17. Table 11 summarizes for each exponent n the values of f
1
, c

1
 and the first 

 1

2

n 
 values of a, and those excluded

values of f
i
 and forbidden factors c

i
 not yielding solutions in a.

For specific non-excluded values of f
1
, the first values of acharacterize completely the series of values of a yielding

composite GM
a,n

 numbers by the relation (2.78) for all positive integers k. For values of f
i
 producing solutions in a, the

corresponding value of c
i
 is either prime or a composite of the form (2nj + 1) (2nk + 1), with j and k integers, while for f

i

to be an excluded values (i.e., to not produce solutions in a), the corresponding forbidden factors c
i
 are composites of

the form (2nj – 1) (2nk + t) with t all odd integers from 3 to (n – 2). Prime distributions in Generalized Mersenne numbers

are further investigated in a following paper.
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